Cargando…
pdCSM-cancer: Using Graph-Based Signatures to Identify Small Molecules with Anticancer Properties
[Image: see text] The development of new, effective, and safe drugs to treat cancer remains a challenging and time-consuming task due to limited hit rates, restraining subsequent development efforts. Despite the impressive progress of quantitative structure–activity relationship and machine learning...
Autores principales: | Al-Jarf, Raghad, de Sá, Alex G. C., Pires, Douglas E. V., Ascher, David B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8317153/ https://www.ncbi.nlm.nih.gov/pubmed/34213323 http://dx.doi.org/10.1021/acs.jcim.1c00168 |
Ejemplares similares
-
pdCSM-GPCR: predicting potent GPCR ligands with graph-based signatures
por: Velloso, João Paulo L, et al.
Publicado: (2021) -
kinCSM: Using graph‐based signatures to predict small molecule CDK2 inhibitors
por: Zhou, Yunzhuo, et al.
Publicado: (2022) -
pkCSM: Predicting
Small-Molecule Pharmacokinetic and
Toxicity Properties Using Graph-Based Signatures
por: Pires, Douglas E. V., et al.
Publicado: (2015) -
cropCSM: designing safe and potent herbicides with graph-based signatures
por: Pires, Douglas E V, et al.
Publicado: (2022) -
mCSM: predicting the effects of mutations in proteins using graph-based signatures
por: Pires, Douglas E. V., et al.
Publicado: (2014)