Cargando…
ChemBioSim: Enhancing Conformal Prediction of In Vivo Toxicity by Use of Predicted Bioactivities
[Image: see text] Computational methods such as machine learning approaches have a strong track record of success in predicting the outcomes of in vitro assays. In contrast, their ability to predict in vivo endpoints is more limited due to the high number of parameters and processes that may influen...
Autores principales: | Garcia de Lomana, Marina, Morger, Andrea, Norinder, Ulf, Buesen, Roland, Landsiedel, Robert, Volkamer, Andrea, Kirchmair, Johannes, Mathea, Miriam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8317154/ https://www.ncbi.nlm.nih.gov/pubmed/34153183 http://dx.doi.org/10.1021/acs.jcim.1c00451 |
Ejemplares similares
-
Studying and mitigating the effects of data drifts on ML model performance at the example of chemical toxicity data
por: Morger, Andrea, et al.
Publicado: (2022) -
KnowTox: pipeline and case study for confident prediction of potential toxic effects of compounds in early phases of development
por: Morger, Andrea, et al.
Publicado: (2020) -
Assessing the calibration in toxicological in vitro models with conformal prediction
por: Morger, Andrea, et al.
Publicado: (2021) -
In Silico Models
to Predict the Perturbation of Molecular
Initiating Events Related to Thyroid Hormone Homeostasis
por: Garcia de Lomana, Marina, et al.
Publicado: (2020) -
Synergy conformal prediction applied to large-scale bioactivity datasets and in federated learning
por: Norinder, Ulf, et al.
Publicado: (2021)