Cargando…
Alkane/Water Partition Coefficient Calculation Based on the Modified AM1 Method and Internal Hydrogen Bonding Sampling Using COSMO-RS
[Image: see text] We introduce a physics-based model for calculating partition coefficients of solutes between water and alkanes, using a combination of a semi-empirical method for COSMO charge density calculation and statistical sampling of internal hydrogen bonds (IHBs). We validate the model on t...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8317156/ https://www.ncbi.nlm.nih.gov/pubmed/34165298 http://dx.doi.org/10.1021/acs.jcim.0c01478 |
Sumario: | [Image: see text] We introduce a physics-based model for calculating partition coefficients of solutes between water and alkanes, using a combination of a semi-empirical method for COSMO charge density calculation and statistical sampling of internal hydrogen bonds (IHBs). We validate the model on the experimental partition data (∼3500 molecules) of small organics, drug-like molecules, and statistical assessment of modeling of proteins and ligand drugs. The model combines two novel algorithms: a bond-correction method for improving the calculation of COSMO charge density from AM1 calculations and a sampling method to deal with IHBs. From a comparison of simulated and experimental partition coefficients, we find a root-mean-square deviation of roughly one log 10 unit. From IHB analysis, we know that IHBs can be present in two states: open (in water) and closed (in apolar solvent). The difference can lead to a shift of as much as two log 10 units per IHB; not taking this effect into account can lead to substantial errors. The method takes a few minutes of calculation time on a single core, per molecule. Although this is still much slower than quantitative structure–activity relationship, it is much faster than molecular simulations and can be readily incorporated into any screening method. |
---|