Cargando…

Anopheles bionomics in a malaria endemic area of southern Thailand

BACKGROUND: Ivermectin mass drug administration (MDA) could accelerate malaria elimination in the Greater Mekong Subregion. This study was performed to characterize the bionomics of Anopheles in Surat Thani province, Thailand. METHODS: Mosquitoes were collected via human landing collections between...

Descripción completa

Detalles Bibliográficos
Autores principales: Wamaket, Narenrit, Khamprapa, Oranicha, Chainarin, Sittinont, Thamsawet, Panisa, Ninsaeng, Ubolrat, Thongsalee, Suttipong, Suwan, Veerast, Sakolvaree, Jira, Takhampunya, Ratree, Davidson, Silas A., McCardle, Patrick W., Sa-angchai, Patiwat, Mukaka, Mavuto, Kiattibutr, Kirakorn, Khamsiriwatchara, Amnat, Nguitragool, Wang, Sattabongkot, Jetsumon, Sirichaisinthop, Jeeraphat, Kobylinski, Kevin C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8317318/
https://www.ncbi.nlm.nih.gov/pubmed/34315509
http://dx.doi.org/10.1186/s13071-021-04870-8
Descripción
Sumario:BACKGROUND: Ivermectin mass drug administration (MDA) could accelerate malaria elimination in the Greater Mekong Subregion. This study was performed to characterize the bionomics of Anopheles in Surat Thani province, Thailand. METHODS: Mosquitoes were collected via human landing collections between February and October 2019. Anopheles mosquitoes were morphologically identified to species. Primary Anopheles malaria vectors were dissected to assess parity status, and a subset were evaluated for molecular identification and Plasmodium detection. RESULTS: A total of 17,348 mosquitoes were collected during the study period; of these, 5777 were Anopheles mosquitoes. Morphological studies identified 15 Anopheles species, of which the most abundant were Anopheles minimus (s.l.) (87.16%, n = 5035), An. dirus s.l. (7.05%, n = 407) and An. barbirostris s.l. (2.86%, n = 165). Molecular identification confirmed that of the An. minimus s.l. mosquitoes collected, 99.80% were An. minimus (s.s.) (n = 484) and 0.2% were An. aconitus (n = 1), of the An. dirus (s.l.) collected, 100% were An. baimaii (n = 348), and of the An. maculatus (s.l.) collected, 93.62% were An. maculatus (s.s.) (n = 44) and 6.38% were An. sawadwongporni (n = 3). No Anopheles mosquito tested was Plasmodium positive (0/879). An average of 11.46 Anopheles were captured per collector per night. There were differences between species in hour of collection (Kruskal–Wallis H-test: χ(2) =  80.89, P < 0.0001, n = 5666), with more An. barbirostris (s.l.) and An. maculatus (s.l.) caught earlier compared to An. minimus (s.l.) (P = 0.0001 and P < 0.0001, respectively) and An. dirus (s.l.) (P = 0.0082 and P < 0.001, respectively). The proportion of parous An. minimus (s.l.) captured by hour increased throughout the night (Wald Chi-square: χ(2) = 17.31, P = 0.000, odds ratio = 1.0535, 95% confidence interval 1.0279–1.0796, n = 3400). Overall, An. minimus (s.l.) parity was 67.68% (2375/3509) with an intra-cluster correlation of 0.0378. A power calculation determined that an An. minimus (s.l.) parity reduction treatment effect size = 34%, with four clusters per treatment arm and a minimum of 300 mosquitoes dissected per cluster, at an α = 0.05, will provide 82% power to detect a significant difference following ivermectin MDA. CONCLUSIONS: The study area in Surat Thani province is an ideal location to evaluate the impact of ivermectin MDA on An. minimus parity. GRAPHICAL ABSTRACT: [Image: see text]