Cargando…
Classification of microcalcification clusters in digital breast tomosynthesis using ensemble convolutional neural network
BACKGROUND: The classification of benign and malignant microcalcification clusters (MCs) is an important task for computer-aided diagnosis (CAD) of digital breast tomosynthesis (DBT) images. Influenced by imaging method, DBT has the characteristic of anisotropic resolution, in which the resolution o...
Autores principales: | Xiao, Bingbing, Sun, Haotian, Meng, You, Peng, Yunsong, Yang, Xiaodong, Chen, Shuangqing, Yan, Zhuangzhi, Zheng, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8317331/ https://www.ncbi.nlm.nih.gov/pubmed/34320986 http://dx.doi.org/10.1186/s12938-021-00908-1 |
Ejemplares similares
-
Three-Dimensional Computer-Aided Detection of Microcalcification Clusters in Digital Breast Tomosynthesis
por: Jeong, Ji-wook, et al.
Publicado: (2016) -
Accuracy of cone-beam computed tomography, digital mammography and digital breast tomosynthesis for microcalcifications and margins to microcalcifications in breast specimens
por: Neubauer, Claudia, et al.
Publicado: (2022) -
Preliminary Clinical Experience with Digital Breast Tomosynthesis in the Visualization of Breast Microcalcifications
por: Destounis, Stamatia V., et al.
Publicado: (2013) -
Automatic Classification of Simulated Breast Tomosynthesis Whole Images for the Presence of Microcalcification Clusters Using Deep CNNs
por: Mota, Ana M., et al.
Publicado: (2022) -
Visualization of Breast Microcalcifications on Digital Breast Tomosynthesis and 2-Dimensional Digital Mammography Using Specimens
por: Byun, Jieun, et al.
Publicado: (2017)