Cargando…

Epigenetic rewriting at centromeric DNA repeats leads to increased chromatin accessibility and chromosomal instability

BACKGROUND: Centromeric regions of human chromosomes contain large numbers of tandemly repeated α-satellite sequences. These sequences are covered with constitutive heterochromatin which is enriched in trimethylation of histone H3 on lysine 9 (H3K9me3). Although well studied using artificial chromos...

Descripción completa

Detalles Bibliográficos
Autores principales: Decombe, Sheldon, Loll, François, Caccianini, Laura, Affannoukoué, Kévin, Izeddin, Ignacio, Mozziconacci, Julien, Escudé, Christophe, Lopes, Judith
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8317386/
https://www.ncbi.nlm.nih.gov/pubmed/34321103
http://dx.doi.org/10.1186/s13072-021-00410-x
Descripción
Sumario:BACKGROUND: Centromeric regions of human chromosomes contain large numbers of tandemly repeated α-satellite sequences. These sequences are covered with constitutive heterochromatin which is enriched in trimethylation of histone H3 on lysine 9 (H3K9me3). Although well studied using artificial chromosomes and global perturbations, the contribution of this epigenetic mark to chromatin structure and genome stability remains poorly known in a more natural context. RESULTS: Using transcriptional activator-like effectors (TALEs) fused to a histone lysine demethylase (KDM4B), we were able to reduce the level of H3K9me3 on the α-satellites repeats of human chromosome 7. We show that the removal of H3K9me3 affects chromatin structure by increasing the accessibility of DNA repeats to the TALE protein. Tethering TALE-demethylase to centromeric repeats impairs the recruitment of HP1α and proteins of Chromosomal Passenger Complex (CPC) on this specific centromere without affecting CENP-A loading. Finally, the epigenetic re-writing by the TALE-KDM4B affects specifically the stability of chromosome 7 upon mitosis, highlighting the importance of H3K9me3 in centromere integrity and chromosome stability, mediated by the recruitment of HP1α and the CPC. CONCLUSION: Our cellular model allows to demonstrate the direct role of pericentromeric H3K9me3 epigenetic mark on centromere integrity and function in a natural context and opens interesting possibilities for further studies regarding the role of the H3K9me3 mark. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13072-021-00410-x.