Cargando…
Forecasting Multi-Wave Epidemics Through Bayesian Inference
We present a simple, near-real-time Bayesian method to infer and forecast a multiwave outbreak, and demonstrate it on the COVID-19 pandemic. The approach uses timely epidemiological data that has been widely available for COVID-19. It provides short-term forecasts of the outbreak’s evolution, which...
Autores principales: | Blonigan, Patrick, Ray, Jaideep, Safta, Cosmin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8317486/ https://www.ncbi.nlm.nih.gov/pubmed/34335019 http://dx.doi.org/10.1007/s11831-021-09603-9 |
Ejemplares similares
-
Effects of B.1.1.7 and B.1.351 on COVID-19 Dynamics: A Campus Reopening Study
por: Linka, Kevin, et al.
Publicado: (2021) -
A Multiscale Approach for the Numerical Simulation of Turbulent Flows with Droplets
por: Gimenez, Juan M., et al.
Publicado: (2021) -
High-Fidelity Simulation of Pathogen Propagation, Transmission and Mitigation in the Built Environment
por: Löhner, Rainald, et al.
Publicado: (2021) -
Mathematical Modeling and Numerical Simulation of Atherosclerosis Based on a Novel Surgeon’s View
por: Soleimani, Meisam, et al.
Publicado: (2021) -
A Digital-Twin and Machine-Learning Framework for Ventilation System Optimization for Capturing Infectious Disease Respiratory Emissions
por: Zohdi, T. I.
Publicado: (2021)