Cargando…
TSNet: predicting transition state structures with tensor field networks and transfer learning
Transition states are among the most important molecular structures in chemistry, critical to a variety of fields such as reaction kinetics, catalyst design, and the study of protein function. However, transition states are very unstable, typically only existing on the order of femtoseconds. The tra...
Autores principales: | Jackson, Riley, Zhang, Wenyuan, Pearson, Jason |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8317659/ https://www.ncbi.nlm.nih.gov/pubmed/34377396 http://dx.doi.org/10.1039/d1sc01206a |
Ejemplares similares
-
A transferable active-learning strategy for reactive molecular force fields
por: Young, Tom A., et al.
Publicado: (2021) -
Predicting electronic structure properties of transition metal complexes with neural networks
por: Janet, Jon Paul, et al.
Publicado: (2017) -
Low-cost prediction of molecular and transition state partition functions via machine learning
por: Komp, Evan, et al.
Publicado: (2022) -
Improving Small Molecule pK(
a
) Prediction Using Transfer Learning With Graph Neural Networks
por: Mayr, Fritz, et al.
Publicado: (2022) -
Excited-state intramolecular proton transfer with and without the assistance of vibronic-transition-induced skeletal deformation in phenol–quinoline
por: Liu, Yu-Hui, et al.
Publicado: (2021)