Cargando…
Bridging the gap between rectifying developables and tangent developables: a family of developable surfaces associated with a space curve
There are two familiar constructions of a developable surface from a space curve. The tangent developable is a ruled surface for which the rulings are tangent to the curve at each point and relative to this surface the absolute value of the geodesic curvature κ(g) of the curve equals the curvature κ...
Autores principales: | Seguin, Brian, Chen, Yi-chao, Fried, Eliot |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8317982/ https://www.ncbi.nlm.nih.gov/pubmed/35153540 http://dx.doi.org/10.1098/rspa.2020.0617 |
Ejemplares similares
-
Möbius bands, unstretchable material sheets and developable surfaces
por: Chen, Yi-chao, et al.
Publicado: (2016) -
Tangente
por: Palacios, Adela
Publicado: (1973) -
On the tangent space to the space of algebraic cycles on a smooth algebraic variety
por: Green, Mark, et al.
Publicado: (2004) -
The reach, metric distortion, geodesic convexity and the variation of tangent spaces
por: Boissonnat, Jean-Daniel, et al.
Publicado: (2019) -
Tangent space alignment: Transfer learning for Brain-Computer Interface
por: Bleuzé, Alexandre, et al.
Publicado: (2022)