Cargando…
Machine learning predicts treatment sensitivity in multiple myeloma based on molecular and clinical information coupled with drug response
Providing treatment sensitivity stratification at the time of cancer diagnosis allows better allocation of patients to alternative treatment options. Despite many clinical and biological risk markers having been associated with variable survival in cancer, assessing the interplay of these markers th...
Autores principales: | Venezian Povoa, Lucas, Ribeiro, Carlos Henrique Costa, da Silva, Israel Tojal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8318243/ https://www.ncbi.nlm.nih.gov/pubmed/34320000 http://dx.doi.org/10.1371/journal.pone.0254596 |
Ejemplares similares
-
A comparison between SOLiD 5500XLand Ion Torrent PGM-derived miRNA
expression profiles in two breast cell lines
por: Branco, Gabriela Pereira, et al.
Publicado: (2020) -
Long-term survival in multiple myeloma
por: João, Cristina, et al.
Publicado: (2014) -
Revisiting Sequential Information Bottleneck: New Implementation and Evaluation
por: Toledo, Assaf, et al.
Publicado: (2022) -
Machine Learning and Deep Learning Applications in Multiple Myeloma Diagnosis, Prognosis, and Treatment Selection
por: Allegra, Alessandro, et al.
Publicado: (2022) -
Unsupervised machine learning improves risk stratification in newly diagnosed multiple myeloma: an analysis of the Spanish Myeloma Group
por: Mosquera Orgueira, Adrian, et al.
Publicado: (2022)