Cargando…
Evaluating the impact of multivariate imputation by MICE in feature selection
Handling missing values is a crucial step in preprocessing data in Machine Learning. Most available algorithms for analyzing datasets in the feature selection process and classification or estimation process analyze complete datasets. Consequently, in many cases, the strategy for dealing with missin...
Autores principales: | Mera-Gaona, Maritza, Neumann, Ursula, Vargas-Canas, Rubiel, López, Diego M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8318311/ https://www.ncbi.nlm.nih.gov/pubmed/34320016 http://dx.doi.org/10.1371/journal.pone.0254720 |
Ejemplares similares
-
Correction: Evaluating the impact of multivariate imputation by MICE in feature selection
por: Mera-Gaona, Maritza, et al.
Publicado: (2021) -
Epileptic spikes detector in pediatric EEG based on matched filters and neural networks
por: Mera-Gaona, Maritza, et al.
Publicado: (2020) -
ImputeGAN: Generative Adversarial Network for Multivariate Time Series Imputation
por: Qin, Rui, et al.
Publicado: (2023) -
Intelligent Telehealth System To Support Epilepsy Diagnosis
por: Molina, Edward, et al.
Publicado: (2020) -
Multi-Dimensional Dataset of Open Data and Satellite Images for Characterization of Food Security and Nutrition
por: Restrepo, David S., et al.
Publicado: (2022)