Cargando…
State‐of‐the‐art machine learning improves predictive accuracy of 1‐year survival after heart transplantation
Autores principales: | Kampaktsis, Polydoros N., Moustakidis, Serafeim, Tzani, Aspasia, Doulamis, Ilias P., Drosou, Anastasios, Tzoumas, Andreas, Asleh, Rabea, Briasoulis, Alexandros |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8318480/ https://www.ncbi.nlm.nih.gov/pubmed/34008301 http://dx.doi.org/10.1002/ehf2.13425 |
Ejemplares similares
-
Outcomes after heart transplantation in patients with cardiac sarcoidosis
por: Asleh, Rabea, et al.
Publicado: (2022) -
Characteristics, Predictors, and Outcomes of Early mTOR Inhibitor Use After Heart Transplantation: Insights From the UNOS Database
por: Kampaktsis, Polydoros N., et al.
Publicado: (2022) -
Preventive versus deferred catheter ablation of myocardial infarct–associated ventricular tachycardia: A meta-analysis
por: Kampaktsis, Polydoros N., et al.
Publicado: (2020) -
Edge-to-Edge Transcatheter Mitral Valve Repair Using PASCAL vs. MitraClip: A Systematic Review and Meta-Analysis
por: Hosseini, Kaveh, et al.
Publicado: (2023) -
Post-transplant Lymphoproliferative Disorder Following Cardiac Transplantation
por: Asleh, Rabea, et al.
Publicado: (2022)