Cargando…
The Importance of Making Assumptions in Bias Analysis
Quantitative bias analyses allow researchers to adjust for uncontrolled confounding, given specification of certain bias parameters. When researchers are concerned about unknown confounders, plausible values for these bias parameters will be difficult to specify. Ding and VanderWeele developed bound...
Autores principales: | MacLehose, Richard F., Ahern, Thomas P., Lash, Timothy L., Poole, Charles, Greenland, Sander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8318561/ https://www.ncbi.nlm.nih.gov/pubmed/34224472 http://dx.doi.org/10.1097/EDE.0000000000001381 |
Ejemplares similares
-
Adaptive Validation Design: A Bayesian Approach to Validation Substudy Design With Prospective Data Collection
por: Collin, Lindsay J., et al.
Publicado: (2020) -
Improving the transparency of meta-analyses with interactive web applications
por: Ahern, Thomas P, et al.
Publicado: (2021) -
Assessing Techniques for Quantifying the Impact of Bias Due to an Unmeasured Confounder: An Applied Example
por: Barberio, Julie, et al.
Publicado: (2021) -
Application of the Adaptive Validation Substudy Design to Colorectal Cancer Recurrence
por: Collin, Lindsay J, et al.
Publicado: (2020) -
Sensitivity Analysis Without Assumptions
por: Ding, Peng, et al.
Publicado: (2016)