Cargando…
Multi-Modal Segmentation of 3D Brain Scans Using Neural Networks
Anatomical segmentation of brain scans is highly relevant for diagnostics and neuroradiology research. Conventionally, segmentation is performed on T(1)-weighted MRI scans, due to the strong soft-tissue contrast. In this work, we report on a comparative study of automated, learning-based brain segme...
Autores principales: | Zopes, Jonathan, Platscher, Moritz, Paganucci, Silvio, Federau, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8318570/ https://www.ncbi.nlm.nih.gov/pubmed/34335436 http://dx.doi.org/10.3389/fneur.2021.653375 |
Ejemplares similares
-
Axial Attention Convolutional Neural Network for Brain Tumor Segmentation with Multi-Modality MRI Scans
por: Tian, Weiwei, et al.
Publicado: (2022) -
Convolutional Neural Networks Enable Robust Automatic Segmentation of the Rat Hippocampus in MRI After Traumatic Brain Injury
por: De Feo, Riccardo, et al.
Publicado: (2022) -
Ischemic infarct detection, localization, and segmentation in noncontrast CT human brain scans: review of automated methods
por: Nowinski, Wieslaw L., et al.
Publicado: (2020) -
Comprehensive Evaluation of Healthy Volunteers Using Multi-Modality Brain Injury Assessments: An Exploratory, Observational Study
por: Weaver, Lindell K., et al.
Publicado: (2018) -
Editorial: Machine Learning in Neuroimaging
por: Federau, Christian, et al.
Publicado: (2021)