Cargando…
A Multiattention-Based Supervised Feature Selection Method for Multivariate Time Series
Feature selection is a known technique to preprocess the data before performing any data mining task. In multivariate time series (MTS) prediction, feature selection needs to find both the most related variables and their corresponding delays. Both aspects, to a certain extent, represent essential c...
Autores principales: | Cao, Li, Chen, Yanting, Zhang, Zhiyang, Gui, Ning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8318748/ https://www.ncbi.nlm.nih.gov/pubmed/34335722 http://dx.doi.org/10.1155/2021/6911192 |
Ejemplares similares
-
TSHVNet: Simultaneous Nuclear Instance Segmentation and Classification in Histopathological Images Based on Multiattention Mechanisms
por: Chen, Yuli, et al.
Publicado: (2022) -
Multiattention Mechanism 3D Object Detection Algorithm Based on RGB and LiDAR Fusion for Intelligent Driving
por: Zhang, Xiucai, et al.
Publicado: (2023) -
Evaluation of interpretability methods for multivariate time series forecasting
por: Ozyegen, Ozan, et al.
Publicado: (2021) -
Pitfalls of supervised feature selection
por: Smialowski, Pawel, et al.
Publicado: (2010) -
Self-supervised Learning for Semi-supervised Time Series Classification
por: Jawed, Shayan, et al.
Publicado: (2020)