Cargando…
Precision Neoantigen Discovery Using Large-scale Immunopeptidomes and Composite Modeling of MHC Peptide Presentation
Major histocompatibility complex (MHC)-bound peptides that originate from tumor-specific genetic alterations, known as neoantigens, are an important class of anticancer therapeutic targets. Accurately predicting peptide presentation by MHC complexes is a key aspect of discovering therapeutically rel...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8318994/ https://www.ncbi.nlm.nih.gov/pubmed/34126241 http://dx.doi.org/10.1016/j.mcpro.2021.100111 |
_version_ | 1783730367013847040 |
---|---|
author | Pyke, Rachel Marty Mellacheruvu, Dattatreya Dea, Steven Abbott, Charles W. Zhang, Simo V. Phillips, Nick A. Harris, Jason Bartha, Gabor Desai, Sejal McClory, Rena West, John Snyder, Michael P. Chen, Richard Boyle, Sean Michael |
author_facet | Pyke, Rachel Marty Mellacheruvu, Dattatreya Dea, Steven Abbott, Charles W. Zhang, Simo V. Phillips, Nick A. Harris, Jason Bartha, Gabor Desai, Sejal McClory, Rena West, John Snyder, Michael P. Chen, Richard Boyle, Sean Michael |
author_sort | Pyke, Rachel Marty |
collection | PubMed |
description | Major histocompatibility complex (MHC)-bound peptides that originate from tumor-specific genetic alterations, known as neoantigens, are an important class of anticancer therapeutic targets. Accurately predicting peptide presentation by MHC complexes is a key aspect of discovering therapeutically relevant neoantigens. Technological improvements in mass-spectrometry-based immunopeptidomics and advanced modeling techniques have vastly improved MHC presentation prediction over the past two decades. However, improvement in the sensitivity and specificity of prediction algorithms is needed for clinical applications such as the development of personalized cancer vaccines, the discovery of biomarkers for response to checkpoint blockade, and the quantification of autoimmune risk in gene therapies. Toward this end, we generated allele-specific immunopeptidomics data using 25 monoallelic cell lines and created Systematic HLA Epitope Ranking Pan Algorithm (SHERPA), a pan-allelic MHC-peptide algorithm for predicting MHC-peptide binding and presentation. In contrast to previously published large-scale monoallelic data, we used an HLA-null K562 parental cell line and a stable transfection of HLA alleles to better emulate native presentation. Our dataset includes five previously unprofiled alleles that expand MHC-binding pocket diversity in the training data and extend allelic coverage in under profiled populations. To improve generalizability, SHERPA systematically integrates 128 monoallelic and 384 multiallelic samples with publicly available immunoproteomics data and binding assay data. Using this dataset, we developed two features that empirically estimate the propensities of genes and specific regions within gene bodies to engender immunopeptides to represent antigen processing. Using a composite model constructed with gradient boosting decision trees, multiallelic deconvolution, and 2.15 million peptides encompassing 167 alleles, we achieved a 1.44-fold improvement of positive predictive value compared with existing tools when evaluated on independent monoallelic datasets and a 1.15-fold improvement when evaluating on tumor samples. With a high degree of accuracy, SHERPA has the potential to enable precision neoantigen discovery for future clinical applications. |
format | Online Article Text |
id | pubmed-8318994 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-83189942021-07-31 Precision Neoantigen Discovery Using Large-scale Immunopeptidomes and Composite Modeling of MHC Peptide Presentation Pyke, Rachel Marty Mellacheruvu, Dattatreya Dea, Steven Abbott, Charles W. Zhang, Simo V. Phillips, Nick A. Harris, Jason Bartha, Gabor Desai, Sejal McClory, Rena West, John Snyder, Michael P. Chen, Richard Boyle, Sean Michael Mol Cell Proteomics Technological Innovation and Resources Major histocompatibility complex (MHC)-bound peptides that originate from tumor-specific genetic alterations, known as neoantigens, are an important class of anticancer therapeutic targets. Accurately predicting peptide presentation by MHC complexes is a key aspect of discovering therapeutically relevant neoantigens. Technological improvements in mass-spectrometry-based immunopeptidomics and advanced modeling techniques have vastly improved MHC presentation prediction over the past two decades. However, improvement in the sensitivity and specificity of prediction algorithms is needed for clinical applications such as the development of personalized cancer vaccines, the discovery of biomarkers for response to checkpoint blockade, and the quantification of autoimmune risk in gene therapies. Toward this end, we generated allele-specific immunopeptidomics data using 25 monoallelic cell lines and created Systematic HLA Epitope Ranking Pan Algorithm (SHERPA), a pan-allelic MHC-peptide algorithm for predicting MHC-peptide binding and presentation. In contrast to previously published large-scale monoallelic data, we used an HLA-null K562 parental cell line and a stable transfection of HLA alleles to better emulate native presentation. Our dataset includes five previously unprofiled alleles that expand MHC-binding pocket diversity in the training data and extend allelic coverage in under profiled populations. To improve generalizability, SHERPA systematically integrates 128 monoallelic and 384 multiallelic samples with publicly available immunoproteomics data and binding assay data. Using this dataset, we developed two features that empirically estimate the propensities of genes and specific regions within gene bodies to engender immunopeptides to represent antigen processing. Using a composite model constructed with gradient boosting decision trees, multiallelic deconvolution, and 2.15 million peptides encompassing 167 alleles, we achieved a 1.44-fold improvement of positive predictive value compared with existing tools when evaluated on independent monoallelic datasets and a 1.15-fold improvement when evaluating on tumor samples. With a high degree of accuracy, SHERPA has the potential to enable precision neoantigen discovery for future clinical applications. American Society for Biochemistry and Molecular Biology 2021-06-12 /pmc/articles/PMC8318994/ /pubmed/34126241 http://dx.doi.org/10.1016/j.mcpro.2021.100111 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Technological Innovation and Resources Pyke, Rachel Marty Mellacheruvu, Dattatreya Dea, Steven Abbott, Charles W. Zhang, Simo V. Phillips, Nick A. Harris, Jason Bartha, Gabor Desai, Sejal McClory, Rena West, John Snyder, Michael P. Chen, Richard Boyle, Sean Michael Precision Neoantigen Discovery Using Large-scale Immunopeptidomes and Composite Modeling of MHC Peptide Presentation |
title | Precision Neoantigen Discovery Using Large-scale Immunopeptidomes and Composite Modeling of MHC Peptide Presentation |
title_full | Precision Neoantigen Discovery Using Large-scale Immunopeptidomes and Composite Modeling of MHC Peptide Presentation |
title_fullStr | Precision Neoantigen Discovery Using Large-scale Immunopeptidomes and Composite Modeling of MHC Peptide Presentation |
title_full_unstemmed | Precision Neoantigen Discovery Using Large-scale Immunopeptidomes and Composite Modeling of MHC Peptide Presentation |
title_short | Precision Neoantigen Discovery Using Large-scale Immunopeptidomes and Composite Modeling of MHC Peptide Presentation |
title_sort | precision neoantigen discovery using large-scale immunopeptidomes and composite modeling of mhc peptide presentation |
topic | Technological Innovation and Resources |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8318994/ https://www.ncbi.nlm.nih.gov/pubmed/34126241 http://dx.doi.org/10.1016/j.mcpro.2021.100111 |
work_keys_str_mv | AT pykerachelmarty precisionneoantigendiscoveryusinglargescaleimmunopeptidomesandcompositemodelingofmhcpeptidepresentation AT mellacheruvudattatreya precisionneoantigendiscoveryusinglargescaleimmunopeptidomesandcompositemodelingofmhcpeptidepresentation AT deasteven precisionneoantigendiscoveryusinglargescaleimmunopeptidomesandcompositemodelingofmhcpeptidepresentation AT abbottcharlesw precisionneoantigendiscoveryusinglargescaleimmunopeptidomesandcompositemodelingofmhcpeptidepresentation AT zhangsimov precisionneoantigendiscoveryusinglargescaleimmunopeptidomesandcompositemodelingofmhcpeptidepresentation AT phillipsnicka precisionneoantigendiscoveryusinglargescaleimmunopeptidomesandcompositemodelingofmhcpeptidepresentation AT harrisjason precisionneoantigendiscoveryusinglargescaleimmunopeptidomesandcompositemodelingofmhcpeptidepresentation AT barthagabor precisionneoantigendiscoveryusinglargescaleimmunopeptidomesandcompositemodelingofmhcpeptidepresentation AT desaisejal precisionneoantigendiscoveryusinglargescaleimmunopeptidomesandcompositemodelingofmhcpeptidepresentation AT mccloryrena precisionneoantigendiscoveryusinglargescaleimmunopeptidomesandcompositemodelingofmhcpeptidepresentation AT westjohn precisionneoantigendiscoveryusinglargescaleimmunopeptidomesandcompositemodelingofmhcpeptidepresentation AT snydermichaelp precisionneoantigendiscoveryusinglargescaleimmunopeptidomesandcompositemodelingofmhcpeptidepresentation AT chenrichard precisionneoantigendiscoveryusinglargescaleimmunopeptidomesandcompositemodelingofmhcpeptidepresentation AT boyleseanmichael precisionneoantigendiscoveryusinglargescaleimmunopeptidomesandcompositemodelingofmhcpeptidepresentation |