Cargando…

Precision Neoantigen Discovery Using Large-scale Immunopeptidomes and Composite Modeling of MHC Peptide Presentation

Major histocompatibility complex (MHC)-bound peptides that originate from tumor-specific genetic alterations, known as neoantigens, are an important class of anticancer therapeutic targets. Accurately predicting peptide presentation by MHC complexes is a key aspect of discovering therapeutically rel...

Descripción completa

Detalles Bibliográficos
Autores principales: Pyke, Rachel Marty, Mellacheruvu, Dattatreya, Dea, Steven, Abbott, Charles W., Zhang, Simo V., Phillips, Nick A., Harris, Jason, Bartha, Gabor, Desai, Sejal, McClory, Rena, West, John, Snyder, Michael P., Chen, Richard, Boyle, Sean Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8318994/
https://www.ncbi.nlm.nih.gov/pubmed/34126241
http://dx.doi.org/10.1016/j.mcpro.2021.100111
_version_ 1783730367013847040
author Pyke, Rachel Marty
Mellacheruvu, Dattatreya
Dea, Steven
Abbott, Charles W.
Zhang, Simo V.
Phillips, Nick A.
Harris, Jason
Bartha, Gabor
Desai, Sejal
McClory, Rena
West, John
Snyder, Michael P.
Chen, Richard
Boyle, Sean Michael
author_facet Pyke, Rachel Marty
Mellacheruvu, Dattatreya
Dea, Steven
Abbott, Charles W.
Zhang, Simo V.
Phillips, Nick A.
Harris, Jason
Bartha, Gabor
Desai, Sejal
McClory, Rena
West, John
Snyder, Michael P.
Chen, Richard
Boyle, Sean Michael
author_sort Pyke, Rachel Marty
collection PubMed
description Major histocompatibility complex (MHC)-bound peptides that originate from tumor-specific genetic alterations, known as neoantigens, are an important class of anticancer therapeutic targets. Accurately predicting peptide presentation by MHC complexes is a key aspect of discovering therapeutically relevant neoantigens. Technological improvements in mass-spectrometry-based immunopeptidomics and advanced modeling techniques have vastly improved MHC presentation prediction over the past two decades. However, improvement in the sensitivity and specificity of prediction algorithms is needed for clinical applications such as the development of personalized cancer vaccines, the discovery of biomarkers for response to checkpoint blockade, and the quantification of autoimmune risk in gene therapies. Toward this end, we generated allele-specific immunopeptidomics data using 25 monoallelic cell lines and created Systematic HLA Epitope Ranking Pan Algorithm (SHERPA), a pan-allelic MHC-peptide algorithm for predicting MHC-peptide binding and presentation. In contrast to previously published large-scale monoallelic data, we used an HLA-null K562 parental cell line and a stable transfection of HLA alleles to better emulate native presentation. Our dataset includes five previously unprofiled alleles that expand MHC-binding pocket diversity in the training data and extend allelic coverage in under profiled populations. To improve generalizability, SHERPA systematically integrates 128 monoallelic and 384 multiallelic samples with publicly available immunoproteomics data and binding assay data. Using this dataset, we developed two features that empirically estimate the propensities of genes and specific regions within gene bodies to engender immunopeptides to represent antigen processing. Using a composite model constructed with gradient boosting decision trees, multiallelic deconvolution, and 2.15 million peptides encompassing 167 alleles, we achieved a 1.44-fold improvement of positive predictive value compared with existing tools when evaluated on independent monoallelic datasets and a 1.15-fold improvement when evaluating on tumor samples. With a high degree of accuracy, SHERPA has the potential to enable precision neoantigen discovery for future clinical applications.
format Online
Article
Text
id pubmed-8318994
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-83189942021-07-31 Precision Neoantigen Discovery Using Large-scale Immunopeptidomes and Composite Modeling of MHC Peptide Presentation Pyke, Rachel Marty Mellacheruvu, Dattatreya Dea, Steven Abbott, Charles W. Zhang, Simo V. Phillips, Nick A. Harris, Jason Bartha, Gabor Desai, Sejal McClory, Rena West, John Snyder, Michael P. Chen, Richard Boyle, Sean Michael Mol Cell Proteomics Technological Innovation and Resources Major histocompatibility complex (MHC)-bound peptides that originate from tumor-specific genetic alterations, known as neoantigens, are an important class of anticancer therapeutic targets. Accurately predicting peptide presentation by MHC complexes is a key aspect of discovering therapeutically relevant neoantigens. Technological improvements in mass-spectrometry-based immunopeptidomics and advanced modeling techniques have vastly improved MHC presentation prediction over the past two decades. However, improvement in the sensitivity and specificity of prediction algorithms is needed for clinical applications such as the development of personalized cancer vaccines, the discovery of biomarkers for response to checkpoint blockade, and the quantification of autoimmune risk in gene therapies. Toward this end, we generated allele-specific immunopeptidomics data using 25 monoallelic cell lines and created Systematic HLA Epitope Ranking Pan Algorithm (SHERPA), a pan-allelic MHC-peptide algorithm for predicting MHC-peptide binding and presentation. In contrast to previously published large-scale monoallelic data, we used an HLA-null K562 parental cell line and a stable transfection of HLA alleles to better emulate native presentation. Our dataset includes five previously unprofiled alleles that expand MHC-binding pocket diversity in the training data and extend allelic coverage in under profiled populations. To improve generalizability, SHERPA systematically integrates 128 monoallelic and 384 multiallelic samples with publicly available immunoproteomics data and binding assay data. Using this dataset, we developed two features that empirically estimate the propensities of genes and specific regions within gene bodies to engender immunopeptides to represent antigen processing. Using a composite model constructed with gradient boosting decision trees, multiallelic deconvolution, and 2.15 million peptides encompassing 167 alleles, we achieved a 1.44-fold improvement of positive predictive value compared with existing tools when evaluated on independent monoallelic datasets and a 1.15-fold improvement when evaluating on tumor samples. With a high degree of accuracy, SHERPA has the potential to enable precision neoantigen discovery for future clinical applications. American Society for Biochemistry and Molecular Biology 2021-06-12 /pmc/articles/PMC8318994/ /pubmed/34126241 http://dx.doi.org/10.1016/j.mcpro.2021.100111 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Technological Innovation and Resources
Pyke, Rachel Marty
Mellacheruvu, Dattatreya
Dea, Steven
Abbott, Charles W.
Zhang, Simo V.
Phillips, Nick A.
Harris, Jason
Bartha, Gabor
Desai, Sejal
McClory, Rena
West, John
Snyder, Michael P.
Chen, Richard
Boyle, Sean Michael
Precision Neoantigen Discovery Using Large-scale Immunopeptidomes and Composite Modeling of MHC Peptide Presentation
title Precision Neoantigen Discovery Using Large-scale Immunopeptidomes and Composite Modeling of MHC Peptide Presentation
title_full Precision Neoantigen Discovery Using Large-scale Immunopeptidomes and Composite Modeling of MHC Peptide Presentation
title_fullStr Precision Neoantigen Discovery Using Large-scale Immunopeptidomes and Composite Modeling of MHC Peptide Presentation
title_full_unstemmed Precision Neoantigen Discovery Using Large-scale Immunopeptidomes and Composite Modeling of MHC Peptide Presentation
title_short Precision Neoantigen Discovery Using Large-scale Immunopeptidomes and Composite Modeling of MHC Peptide Presentation
title_sort precision neoantigen discovery using large-scale immunopeptidomes and composite modeling of mhc peptide presentation
topic Technological Innovation and Resources
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8318994/
https://www.ncbi.nlm.nih.gov/pubmed/34126241
http://dx.doi.org/10.1016/j.mcpro.2021.100111
work_keys_str_mv AT pykerachelmarty precisionneoantigendiscoveryusinglargescaleimmunopeptidomesandcompositemodelingofmhcpeptidepresentation
AT mellacheruvudattatreya precisionneoantigendiscoveryusinglargescaleimmunopeptidomesandcompositemodelingofmhcpeptidepresentation
AT deasteven precisionneoantigendiscoveryusinglargescaleimmunopeptidomesandcompositemodelingofmhcpeptidepresentation
AT abbottcharlesw precisionneoantigendiscoveryusinglargescaleimmunopeptidomesandcompositemodelingofmhcpeptidepresentation
AT zhangsimov precisionneoantigendiscoveryusinglargescaleimmunopeptidomesandcompositemodelingofmhcpeptidepresentation
AT phillipsnicka precisionneoantigendiscoveryusinglargescaleimmunopeptidomesandcompositemodelingofmhcpeptidepresentation
AT harrisjason precisionneoantigendiscoveryusinglargescaleimmunopeptidomesandcompositemodelingofmhcpeptidepresentation
AT barthagabor precisionneoantigendiscoveryusinglargescaleimmunopeptidomesandcompositemodelingofmhcpeptidepresentation
AT desaisejal precisionneoantigendiscoveryusinglargescaleimmunopeptidomesandcompositemodelingofmhcpeptidepresentation
AT mccloryrena precisionneoantigendiscoveryusinglargescaleimmunopeptidomesandcompositemodelingofmhcpeptidepresentation
AT westjohn precisionneoantigendiscoveryusinglargescaleimmunopeptidomesandcompositemodelingofmhcpeptidepresentation
AT snydermichaelp precisionneoantigendiscoveryusinglargescaleimmunopeptidomesandcompositemodelingofmhcpeptidepresentation
AT chenrichard precisionneoantigendiscoveryusinglargescaleimmunopeptidomesandcompositemodelingofmhcpeptidepresentation
AT boyleseanmichael precisionneoantigendiscoveryusinglargescaleimmunopeptidomesandcompositemodelingofmhcpeptidepresentation