Cargando…
Prediction of treatment outcome in burning mouth syndrome patients using machine learning based on clinical data
The purpose of this study is to apply a machine learning approach to predict whether patients with burning mouth syndrome (BMS) respond to the initial approach and clonazepam therapy based on clinical data. Among the patients with the primary type of BMS who visited the clinic from 2006 to 2015, tho...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8319111/ https://www.ncbi.nlm.nih.gov/pubmed/34321575 http://dx.doi.org/10.1038/s41598-021-94940-9 |
Sumario: | The purpose of this study is to apply a machine learning approach to predict whether patients with burning mouth syndrome (BMS) respond to the initial approach and clonazepam therapy based on clinical data. Among the patients with the primary type of BMS who visited the clinic from 2006 to 2015, those treated with the initial approach of detailed explanation regarding home care instruction and use of oral topical lubricants, or who were prescribed clonazepam for a minimum of 1 month were included in this study. The clinical data and treatment outcomes were collected from medical records. Extreme Gradient-Boosted Decision Trees was used for machine learning algorithms to construct prediction models. Accuracy of the prediction models was evaluated and feature importance calculated. The accuracy of the prediction models for the initial approach and clonazepam therapy was 67.6% and 67.4%, respectively. Aggravating factors and psychological distress were important features in the prediction model for the initial approach, and intensity of symptoms before administration was the important feature in the prediction model for clonazepam therapy. In conclusion, the analysis of treatment outcomes in patients with BMS using a machine learning approach showed meaningful results of clinical applicability. |
---|