Cargando…

Opposing effects of selectivity and invariance in peripheral vision

Sensory processing necessitates discarding some information in service of preserving and reformatting more behaviorally relevant information. Sensory neurons seem to achieve this by responding selectively to particular combinations of features in their inputs, while averaging over or ignoring irrele...

Descripción completa

Detalles Bibliográficos
Autores principales: Ziemba, Corey M., Simoncelli, Eero P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8319169/
https://www.ncbi.nlm.nih.gov/pubmed/34321483
http://dx.doi.org/10.1038/s41467-021-24880-5
Descripción
Sumario:Sensory processing necessitates discarding some information in service of preserving and reformatting more behaviorally relevant information. Sensory neurons seem to achieve this by responding selectively to particular combinations of features in their inputs, while averaging over or ignoring irrelevant combinations. Here, we expose the perceptual implications of this tradeoff between selectivity and invariance, using stimuli and tasks that explicitly reveal their opposing effects on discrimination performance. We generate texture stimuli with statistics derived from natural photographs, and ask observers to perform two different tasks: Discrimination between images drawn from families with different statistics, and discrimination between image samples with identical statistics. For both tasks, the performance of an ideal observer improves with stimulus size. In contrast, humans become better at family discrimination but worse at sample discrimination. We demonstrate through simulations that these behaviors arise naturally in an observer model that relies on a common set of physiologically plausible local statistical measurements for both tasks.