Cargando…
Simplifying functional network representation and interpretation through causality clustering
Functional networks, i.e. networks representing the interactions between the elements of a complex system and reconstructed from the observed elements’ dynamics, are becoming a fundamental tool to unravel the structures created by the movement of information in systems like the human brain. They als...
Autor principal: | Zanin, Massimiliano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8319423/ https://www.ncbi.nlm.nih.gov/pubmed/34321541 http://dx.doi.org/10.1038/s41598-021-94797-y |
Ejemplares similares
-
Simplified activity cliff network representations with high interpretability and immediate access to SAR information
por: Hu, Huabin, et al.
Publicado: (2020) -
On causality of extreme events
por: Zanin, Massimiliano
Publicado: (2016) -
Optimizing Functional Network Representation of Multivariate Time Series
por: Zanin, Massimiliano, et al.
Publicado: (2012) -
Feature Selection in the Reconstruction of Complex Network Representations of Spectral Data
por: Zanin, Massimiliano, et al.
Publicado: (2013) -
Determinable and interpretable network representation for link prediction
por: Deng, Yue
Publicado: (2022)