Cargando…

Nitric Oxide-Releasing Nanoparticles Are Similar to Efinaconazole in Their Capacity to Eradicate Trichophyton rubrum Biofilms

Filamentous fungi such as Trichophyton rubrum and T. mentagrophytes, the main causative agents of onychomycosis, have been recognized as biofilm-forming microorganisms. Nitric oxide-releasing nanoparticles (NO-np) are currently in development for the management of superficial and deep bacterial and...

Descripción completa

Detalles Bibliográficos
Autores principales: Costa-Orlandi, Caroline Barcelos, Martinez, Luis R., Bila, Níura Madalena, Friedman, Joel M., Friedman, Adam J., Mendes-Giannini, Maria José S., Nosanchuk, Joshua D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8319823/
https://www.ncbi.nlm.nih.gov/pubmed/34336712
http://dx.doi.org/10.3389/fcimb.2021.684150
Descripción
Sumario:Filamentous fungi such as Trichophyton rubrum and T. mentagrophytes, the main causative agents of onychomycosis, have been recognized as biofilm-forming microorganisms. Nitric oxide-releasing nanoparticles (NO-np) are currently in development for the management of superficial and deep bacterial and fungal infections, with documented activity against biofilms. In this context, this work aimed to evaluate, for the first time, the in vitro anti-T. rubrum biofilm potential of NO-np using standard ATCC MYA-4438 and clinical BR1A strains and compare it to commonly used antifungal drugs including fluconazole, terbinafine and efinaconazole. The biofilms formed by the standard strain produced more biomass than those from the clinical strain. NO-np, fluconazole, terbinafine, and efinaconazole inhibited the in vitro growth of planktonic T. rubrum cells. Similarly, NO-np reduced the metabolic activities of clinical strain BR1A preformed biofilms at the highest concentration tested (SMIC(50) = 40 mg/mL). Scanning electron and confocal microscopy revealed that NO-np and efinaconazole severely damaged established biofilms for both strains, resulting in collapse of hyphal cell walls and reduced the density, extracellular matrix and thickness of the biofilms. These findings suggest that biofilms should be considered when developing and testing new drugs for the treatment of dermatophytosis. Development of a biofilm phenotype by these fungi may explain the resistance of dermatophytes to some antifungals and why prolonged treatment is usually required for onychomycosis.