Cargando…
Fine-Tuning of Alkaline Residues on the Hydrophilic Face Provides a Non-toxic Cationic α-Helical Antimicrobial Peptide Against Antibiotic-Resistant ESKAPE Pathogens
Antibiotic-resistant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) has become a serious threat to public health worldwide. Cationic α-helical antimicrobial peptides (CαAMPs) have attrac...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8319832/ https://www.ncbi.nlm.nih.gov/pubmed/34335511 http://dx.doi.org/10.3389/fmicb.2021.684591 |
_version_ | 1783730533356797952 |
---|---|
author | Luo, Xudong Ye, Xiangdong Ding, Li Zhu, Wen Yi, Pengcheng Zhao, Zhiwen Gao, Huanhuan Shu, Zhan Li, Shan Sang, Ming Wang, Jue Zhong, Weihua Chen, Zongyun |
author_facet | Luo, Xudong Ye, Xiangdong Ding, Li Zhu, Wen Yi, Pengcheng Zhao, Zhiwen Gao, Huanhuan Shu, Zhan Li, Shan Sang, Ming Wang, Jue Zhong, Weihua Chen, Zongyun |
author_sort | Luo, Xudong |
collection | PubMed |
description | Antibiotic-resistant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) has become a serious threat to public health worldwide. Cationic α-helical antimicrobial peptides (CαAMPs) have attracted much attention as promising solutions in post-antibiotic era. However, strong hemolytic activity and in vivo inefficacy have hindered their pharmaceutical development. Here, we attempt to address these obstacles by investigating BmKn2 and BmKn2-7, two scorpion-derived CαAMPs with the same hydrophobic face and a distinct hydrophilic face. Through structural comparison, mutant design and functional analyses, we found that while keeping the hydrophobic face unchanged, increasing the number of alkaline residues (i.e., Lys + Arg residues) on the hydrophilic face of BmKn2 reduces the hemolytic activity and broadens the antimicrobial spectrum. Strikingly, when keeping the total number of alkaline residues constant, increasing the number of Lys residues on the hydrophilic face of BmKn2-7 significantly reduces the hemolytic activity but does not influence the antimicrobial activity. BmKn2-7K, a mutant of BmKn2-7 in which all of the Arg residues on the hydrophilic face were replaced with Lys, showed the lowest hemolytic activity and potent antimicrobial activity against antibiotic-resistant ESKAPE pathogens. Moreover, in vivo experiments indicate that BmKn2-7K displays potent antimicrobial efficacy against both the penicillin-resistant S. aureus and the carbapenem- and multidrug-resistant A. baumannii, and is non-toxic at the antimicrobial dosages. Taken together, our work highlights the significant functional disparity of Lys vs Arg in the scorpion-derived antimicrobial peptide BmKn2-7, and provides a promising lead molecule for drug development against ESKAPE pathogens. |
format | Online Article Text |
id | pubmed-8319832 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-83198322021-07-30 Fine-Tuning of Alkaline Residues on the Hydrophilic Face Provides a Non-toxic Cationic α-Helical Antimicrobial Peptide Against Antibiotic-Resistant ESKAPE Pathogens Luo, Xudong Ye, Xiangdong Ding, Li Zhu, Wen Yi, Pengcheng Zhao, Zhiwen Gao, Huanhuan Shu, Zhan Li, Shan Sang, Ming Wang, Jue Zhong, Weihua Chen, Zongyun Front Microbiol Microbiology Antibiotic-resistant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) has become a serious threat to public health worldwide. Cationic α-helical antimicrobial peptides (CαAMPs) have attracted much attention as promising solutions in post-antibiotic era. However, strong hemolytic activity and in vivo inefficacy have hindered their pharmaceutical development. Here, we attempt to address these obstacles by investigating BmKn2 and BmKn2-7, two scorpion-derived CαAMPs with the same hydrophobic face and a distinct hydrophilic face. Through structural comparison, mutant design and functional analyses, we found that while keeping the hydrophobic face unchanged, increasing the number of alkaline residues (i.e., Lys + Arg residues) on the hydrophilic face of BmKn2 reduces the hemolytic activity and broadens the antimicrobial spectrum. Strikingly, when keeping the total number of alkaline residues constant, increasing the number of Lys residues on the hydrophilic face of BmKn2-7 significantly reduces the hemolytic activity but does not influence the antimicrobial activity. BmKn2-7K, a mutant of BmKn2-7 in which all of the Arg residues on the hydrophilic face were replaced with Lys, showed the lowest hemolytic activity and potent antimicrobial activity against antibiotic-resistant ESKAPE pathogens. Moreover, in vivo experiments indicate that BmKn2-7K displays potent antimicrobial efficacy against both the penicillin-resistant S. aureus and the carbapenem- and multidrug-resistant A. baumannii, and is non-toxic at the antimicrobial dosages. Taken together, our work highlights the significant functional disparity of Lys vs Arg in the scorpion-derived antimicrobial peptide BmKn2-7, and provides a promising lead molecule for drug development against ESKAPE pathogens. Frontiers Media S.A. 2021-07-15 /pmc/articles/PMC8319832/ /pubmed/34335511 http://dx.doi.org/10.3389/fmicb.2021.684591 Text en Copyright © 2021 Luo, Ye, Ding, Zhu, Yi, Zhao, Gao, Shu, Li, Sang, Wang, Zhong and Chen. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Luo, Xudong Ye, Xiangdong Ding, Li Zhu, Wen Yi, Pengcheng Zhao, Zhiwen Gao, Huanhuan Shu, Zhan Li, Shan Sang, Ming Wang, Jue Zhong, Weihua Chen, Zongyun Fine-Tuning of Alkaline Residues on the Hydrophilic Face Provides a Non-toxic Cationic α-Helical Antimicrobial Peptide Against Antibiotic-Resistant ESKAPE Pathogens |
title | Fine-Tuning of Alkaline Residues on the Hydrophilic Face Provides a Non-toxic Cationic α-Helical Antimicrobial Peptide Against Antibiotic-Resistant ESKAPE Pathogens |
title_full | Fine-Tuning of Alkaline Residues on the Hydrophilic Face Provides a Non-toxic Cationic α-Helical Antimicrobial Peptide Against Antibiotic-Resistant ESKAPE Pathogens |
title_fullStr | Fine-Tuning of Alkaline Residues on the Hydrophilic Face Provides a Non-toxic Cationic α-Helical Antimicrobial Peptide Against Antibiotic-Resistant ESKAPE Pathogens |
title_full_unstemmed | Fine-Tuning of Alkaline Residues on the Hydrophilic Face Provides a Non-toxic Cationic α-Helical Antimicrobial Peptide Against Antibiotic-Resistant ESKAPE Pathogens |
title_short | Fine-Tuning of Alkaline Residues on the Hydrophilic Face Provides a Non-toxic Cationic α-Helical Antimicrobial Peptide Against Antibiotic-Resistant ESKAPE Pathogens |
title_sort | fine-tuning of alkaline residues on the hydrophilic face provides a non-toxic cationic α-helical antimicrobial peptide against antibiotic-resistant eskape pathogens |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8319832/ https://www.ncbi.nlm.nih.gov/pubmed/34335511 http://dx.doi.org/10.3389/fmicb.2021.684591 |
work_keys_str_mv | AT luoxudong finetuningofalkalineresiduesonthehydrophilicfaceprovidesanontoxiccationicahelicalantimicrobialpeptideagainstantibioticresistanteskapepathogens AT yexiangdong finetuningofalkalineresiduesonthehydrophilicfaceprovidesanontoxiccationicahelicalantimicrobialpeptideagainstantibioticresistanteskapepathogens AT dingli finetuningofalkalineresiduesonthehydrophilicfaceprovidesanontoxiccationicahelicalantimicrobialpeptideagainstantibioticresistanteskapepathogens AT zhuwen finetuningofalkalineresiduesonthehydrophilicfaceprovidesanontoxiccationicahelicalantimicrobialpeptideagainstantibioticresistanteskapepathogens AT yipengcheng finetuningofalkalineresiduesonthehydrophilicfaceprovidesanontoxiccationicahelicalantimicrobialpeptideagainstantibioticresistanteskapepathogens AT zhaozhiwen finetuningofalkalineresiduesonthehydrophilicfaceprovidesanontoxiccationicahelicalantimicrobialpeptideagainstantibioticresistanteskapepathogens AT gaohuanhuan finetuningofalkalineresiduesonthehydrophilicfaceprovidesanontoxiccationicahelicalantimicrobialpeptideagainstantibioticresistanteskapepathogens AT shuzhan finetuningofalkalineresiduesonthehydrophilicfaceprovidesanontoxiccationicahelicalantimicrobialpeptideagainstantibioticresistanteskapepathogens AT lishan finetuningofalkalineresiduesonthehydrophilicfaceprovidesanontoxiccationicahelicalantimicrobialpeptideagainstantibioticresistanteskapepathogens AT sangming finetuningofalkalineresiduesonthehydrophilicfaceprovidesanontoxiccationicahelicalantimicrobialpeptideagainstantibioticresistanteskapepathogens AT wangjue finetuningofalkalineresiduesonthehydrophilicfaceprovidesanontoxiccationicahelicalantimicrobialpeptideagainstantibioticresistanteskapepathogens AT zhongweihua finetuningofalkalineresiduesonthehydrophilicfaceprovidesanontoxiccationicahelicalantimicrobialpeptideagainstantibioticresistanteskapepathogens AT chenzongyun finetuningofalkalineresiduesonthehydrophilicfaceprovidesanontoxiccationicahelicalantimicrobialpeptideagainstantibioticresistanteskapepathogens |