Cargando…

Pancreatic stone protein for early mortality prediction in COVID-19 patients

Detalles Bibliográficos
Autores principales: Van Singer, Mathias, Brahier, Thomas, Brochu Vez, Marie-Josée, Gerhard Donnet, Hélène, Hugli, Olivier, Boillat-Blanco, Noémie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8320311/
https://www.ncbi.nlm.nih.gov/pubmed/34325711
http://dx.doi.org/10.1186/s13054-021-03704-4
_version_ 1783730624965640192
author Van Singer, Mathias
Brahier, Thomas
Brochu Vez, Marie-Josée
Gerhard Donnet, Hélène
Hugli, Olivier
Boillat-Blanco, Noémie
author_facet Van Singer, Mathias
Brahier, Thomas
Brochu Vez, Marie-Josée
Gerhard Donnet, Hélène
Hugli, Olivier
Boillat-Blanco, Noémie
author_sort Van Singer, Mathias
collection PubMed
description
format Online
Article
Text
id pubmed-8320311
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-83203112021-07-29 Pancreatic stone protein for early mortality prediction in COVID-19 patients Van Singer, Mathias Brahier, Thomas Brochu Vez, Marie-Josée Gerhard Donnet, Hélène Hugli, Olivier Boillat-Blanco, Noémie Crit Care Research Letter BioMed Central 2021-07-29 /pmc/articles/PMC8320311/ /pubmed/34325711 http://dx.doi.org/10.1186/s13054-021-03704-4 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research Letter
Van Singer, Mathias
Brahier, Thomas
Brochu Vez, Marie-Josée
Gerhard Donnet, Hélène
Hugli, Olivier
Boillat-Blanco, Noémie
Pancreatic stone protein for early mortality prediction in COVID-19 patients
title Pancreatic stone protein for early mortality prediction in COVID-19 patients
title_full Pancreatic stone protein for early mortality prediction in COVID-19 patients
title_fullStr Pancreatic stone protein for early mortality prediction in COVID-19 patients
title_full_unstemmed Pancreatic stone protein for early mortality prediction in COVID-19 patients
title_short Pancreatic stone protein for early mortality prediction in COVID-19 patients
title_sort pancreatic stone protein for early mortality prediction in covid-19 patients
topic Research Letter
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8320311/
https://www.ncbi.nlm.nih.gov/pubmed/34325711
http://dx.doi.org/10.1186/s13054-021-03704-4
work_keys_str_mv AT vansingermathias pancreaticstoneproteinforearlymortalitypredictionincovid19patients
AT brahierthomas pancreaticstoneproteinforearlymortalitypredictionincovid19patients
AT brochuvezmariejosee pancreaticstoneproteinforearlymortalitypredictionincovid19patients
AT gerharddonnethelene pancreaticstoneproteinforearlymortalitypredictionincovid19patients
AT hugliolivier pancreaticstoneproteinforearlymortalitypredictionincovid19patients
AT boillatblanconoemie pancreaticstoneproteinforearlymortalitypredictionincovid19patients