Cargando…

Decreased Serum Brain-Derived Neurotrophic Factor Concentrations 72 Hours Following Marathon Running

Background: Physical exercise has been linked to beneficial effects on brain plasticity. One potential key mechanism for this relationship is an exercise-induced increase of brain-derived neurotrophic factor (BDNF). However, the kinetics of BDNF in athletes during training phase, extreme exercise co...

Descripción completa

Detalles Bibliográficos
Autores principales: Roeh, Astrid, Holdenrieder, Stefan, Schoenfeld, Julia, Haeckert, Jan, Halle, Martin, Falkai, Peter, Scherr, Johannes, Hasan, Alkomiet
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8320388/
https://www.ncbi.nlm.nih.gov/pubmed/34335291
http://dx.doi.org/10.3389/fphys.2021.668454
Descripción
Sumario:Background: Physical exercise has been linked to beneficial effects on brain plasticity. One potential key mechanism for this relationship is an exercise-induced increase of brain-derived neurotrophic factor (BDNF). However, the kinetics of BDNF in athletes during training phase, extreme exercise competition, and recovery period have not been investigated so far. Methods: We assessed serum BDNF concentrations in 51 marathon runners (23% female, mean age 43 years) in a longitudinal study design over a period of 6 months. Assessments were conducted during the training period before the marathon and after the marathon race during short-term (24 to 72 h) and long-term (3 months) follow-ups. Potential confounders (fitness level, sex, and platelet count) were included in subsequent linear-model analyses. Results: Linear mixed-model analyses revealed a main effect of time for BDNF concentrations over the study period (F((4,89.389)) = 4.296, p = 0.003). Values decreased significantly with the lowest values at 72 h after the marathon compared to baseline (p = 0.025), a finding that was more pronounced in the larger male cohort. Conclusion: Prolonged exercise induces a significant decrease in serum BDNF concentration 72 h post-exercise. We assume that this observation is mainly driven by regenerative mechanisms and a higher muscular utilization.