Cargando…
One-Time Optimization of Advanced T Cell Culture Media Using a Machine Learning Pipeline
The growing application of cell and gene therapies in humans leads to a need for cell type-optimized culture media. Design of Experiments (DoE) is a successful and well known tool for the development and optimization of cell culture media for bioprocessing. When optimizing culture media for primary...
Autores principales: | Grzesik, Paul, Warth, Sebastian C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8320393/ https://www.ncbi.nlm.nih.gov/pubmed/34336796 http://dx.doi.org/10.3389/fbioe.2021.614324 |
Ejemplares similares
-
Bioink Formulation and Machine Learning-Empowered Bioprinting Optimization
por: Freeman, Sebastian, et al.
Publicado: (2022) -
A review of algorithmic approaches for cell culture media optimization
por: Zhou, Tianxun, et al.
Publicado: (2023) -
Computational Enzyme Engineering Pipelines for Optimized Production of Renewable Chemicals
por: Scherer, Marc, et al.
Publicado: (2021) -
Perfect prosthetic heart valve: generative design with machine learning, modeling, and optimization
por: Danilov, Viacheslav V., et al.
Publicado: (2023) -
Sense and Learn: Recent Advances in Wearable Sensing and Machine Learning for Blood Glucose Monitoring and Trend-Detection
por: Alhaddad, Ahmad Yaser, et al.
Publicado: (2022)