Cargando…
MARGIN: Uncovering Deep Neural Networks Using Graph Signal Analysis
Interpretability has emerged as a crucial aspect of building trust in machine learning systems, aimed at providing insights into the working of complex neural networks that are otherwise opaque to a user. There are a plethora of existing solutions addressing various aspects of interpretability rangi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8320743/ https://www.ncbi.nlm.nih.gov/pubmed/34337397 http://dx.doi.org/10.3389/fdata.2021.589417 |
Sumario: | Interpretability has emerged as a crucial aspect of building trust in machine learning systems, aimed at providing insights into the working of complex neural networks that are otherwise opaque to a user. There are a plethora of existing solutions addressing various aspects of interpretability ranging from identifying prototypical samples in a dataset to explaining image predictions or explaining mis-classifications. While all of these diverse techniques address seemingly different aspects of interpretability, we hypothesize that a large family of interepretability tasks are variants of the same central problem which is identifying relative change in a model’s prediction. This paper introduces MARGIN, a simple yet general approach to address a large set of interpretability tasks MARGIN exploits ideas rooted in graph signal analysis to determine influential nodes in a graph, which are defined as those nodes that maximally describe a function defined on the graph. By carefully defining task-specific graphs and functions, we demonstrate that MARGIN outperforms existing approaches in a number of disparate interpretability challenges. |
---|