Cargando…
Causal Datasheet for Datasets: An Evaluation Guide for Real-World Data Analysis and Data Collection Design Using Bayesian Networks
Developing data-driven solutions that address real-world problems requires understanding of these problems’ causes and how their interaction affects the outcome–often with only observational data. Causal Bayesian Networks (BN) have been proposed as a powerful method for discovering and representing...
Autores principales: | Butcher, Bradley, Huang, Vincent S., Robinson, Christopher, Reffin, Jeremy, Sgaier, Sema K., Charles, Grace, Quadrianto, Novi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8320747/ https://www.ncbi.nlm.nih.gov/pubmed/34337389 http://dx.doi.org/10.3389/frai.2021.612551 |
Ejemplares similares
-
Tuning Fairness by Balancing Target Labels
por: Kehrenberg, Thomas, et al.
Publicado: (2020) -
Generating high-fidelity privacy-conscious synthetic patient data for causal effect estimation with multiple treatments
por: Shi, Jingpu, et al.
Publicado: (2022) -
An Exploration of Stress: Leveraging Online Data from Crowdsourcing Platforms
por: Roddy, James, et al.
Publicado: (2021) -
Causal graph extraction from news: a comparative study of time-series causality learning techniques
por: Maisonnave, Mariano, et al.
Publicado: (2022) -
DeepCausality: A general AI-powered causal inference framework for free text: A case study of LiverTox
por: Wang, Xingqiao, et al.
Publicado: (2022)