Cargando…
Efficient FPGA Implementation of Automatic Nuclei Detection in Histopathology Images
Accurate and efficient detection of cell nuclei is an important step towards the development of a pathology-based Computer Aided Diagnosis. Generally, high-resolution histopathology images are very large, in the order of billion pixels, therefore nuclei detection is a highly compute intensive task,...
Autores principales: | Zhou, Haonan, Machupalli, Raju, Mandal, Mrinal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8320863/ https://www.ncbi.nlm.nih.gov/pubmed/34465711 http://dx.doi.org/10.3390/jimaging5010021 |
Ejemplares similares
-
Multi-Pass Adaptive Voting for Nuclei Detection in Histopathological Images
por: Lu, Cheng, et al.
Publicado: (2016) -
Fully Parallel Implementation of Otsu Automatic Image Thresholding Algorithm on FPGA
por: Barros, Wysterlânya K. P., et al.
Publicado: (2021) -
Automatic Nuclei Segmentation in H&E Stained Breast Cancer Histopathology Images
por: Veta, Mitko, et al.
Publicado: (2013) -
Automatic extraction of cell nuclei from H&E-stained histopathological images
por: Yi, Faliu, et al.
Publicado: (2017) -
An automatic nuclei segmentation method based on deep convolutional neural networks for histopathology images
por: Jung, Hwejin, et al.
Publicado: (2019)