Cargando…
Local Indicators of Spatial Autocorrelation (LISA): Application to Blind Noise-Based Perceptual Quality Metric Index for Magnetic Resonance Images
Noise-based quality evaluation of MRI images is highly desired in noise-dominant environments. Current noise-based MRI quality evaluation methods have drawbacks which limit their effective performance. Traditional full-reference methods such as SNR and most of the model-based techniques cannot provi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8320873/ https://www.ncbi.nlm.nih.gov/pubmed/34465703 http://dx.doi.org/10.3390/jimaging5010020 |
_version_ | 1783730718417879040 |
---|---|
author | Osadebey, Michael Pedersen, Marius Arnold, Douglas Wendel-Mitoraj, Katrina |
author_facet | Osadebey, Michael Pedersen, Marius Arnold, Douglas Wendel-Mitoraj, Katrina |
author_sort | Osadebey, Michael |
collection | PubMed |
description | Noise-based quality evaluation of MRI images is highly desired in noise-dominant environments. Current noise-based MRI quality evaluation methods have drawbacks which limit their effective performance. Traditional full-reference methods such as SNR and most of the model-based techniques cannot provide perceptual quality metrics required for accurate diagnosis, treatment and monitoring of diseases. Although techniques based on the Moran coefficients are perceptual quality metrics, they are full-reference methods and will be ineffective in applications where the reference image is not available. Furthermore, the predicted quality scores are difficult to interpret because their quality indices are not standardized. In this paper, we propose a new no-reference perceptual quality evaluation method for grayscale images such as MRI images. Our approach is formulated to mimic how humans perceive an image. It transforms noise level into a standardized perceptual quality score. Global Moran statistics is combined with local indicators of spatial autocorrelation in the form of local Moran statistics. Quality score is predicted from perceptually weighted combination of clustered and random pixels. Performance evaluation, comparative performance evaluation and validation by human observers, shows that the proposed method will be a useful tool in the evaluation of retrospectively acquired MRI images and the evaluation of noise reduction algorithms. |
format | Online Article Text |
id | pubmed-8320873 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83208732021-08-26 Local Indicators of Spatial Autocorrelation (LISA): Application to Blind Noise-Based Perceptual Quality Metric Index for Magnetic Resonance Images Osadebey, Michael Pedersen, Marius Arnold, Douglas Wendel-Mitoraj, Katrina J Imaging Article Noise-based quality evaluation of MRI images is highly desired in noise-dominant environments. Current noise-based MRI quality evaluation methods have drawbacks which limit their effective performance. Traditional full-reference methods such as SNR and most of the model-based techniques cannot provide perceptual quality metrics required for accurate diagnosis, treatment and monitoring of diseases. Although techniques based on the Moran coefficients are perceptual quality metrics, they are full-reference methods and will be ineffective in applications where the reference image is not available. Furthermore, the predicted quality scores are difficult to interpret because their quality indices are not standardized. In this paper, we propose a new no-reference perceptual quality evaluation method for grayscale images such as MRI images. Our approach is formulated to mimic how humans perceive an image. It transforms noise level into a standardized perceptual quality score. Global Moran statistics is combined with local indicators of spatial autocorrelation in the form of local Moran statistics. Quality score is predicted from perceptually weighted combination of clustered and random pixels. Performance evaluation, comparative performance evaluation and validation by human observers, shows that the proposed method will be a useful tool in the evaluation of retrospectively acquired MRI images and the evaluation of noise reduction algorithms. MDPI 2019-01-15 /pmc/articles/PMC8320873/ /pubmed/34465703 http://dx.doi.org/10.3390/jimaging5010020 Text en © 2019 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Article Osadebey, Michael Pedersen, Marius Arnold, Douglas Wendel-Mitoraj, Katrina Local Indicators of Spatial Autocorrelation (LISA): Application to Blind Noise-Based Perceptual Quality Metric Index for Magnetic Resonance Images |
title | Local Indicators of Spatial Autocorrelation (LISA): Application to Blind Noise-Based Perceptual Quality Metric Index for Magnetic Resonance Images |
title_full | Local Indicators of Spatial Autocorrelation (LISA): Application to Blind Noise-Based Perceptual Quality Metric Index for Magnetic Resonance Images |
title_fullStr | Local Indicators of Spatial Autocorrelation (LISA): Application to Blind Noise-Based Perceptual Quality Metric Index for Magnetic Resonance Images |
title_full_unstemmed | Local Indicators of Spatial Autocorrelation (LISA): Application to Blind Noise-Based Perceptual Quality Metric Index for Magnetic Resonance Images |
title_short | Local Indicators of Spatial Autocorrelation (LISA): Application to Blind Noise-Based Perceptual Quality Metric Index for Magnetic Resonance Images |
title_sort | local indicators of spatial autocorrelation (lisa): application to blind noise-based perceptual quality metric index for magnetic resonance images |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8320873/ https://www.ncbi.nlm.nih.gov/pubmed/34465703 http://dx.doi.org/10.3390/jimaging5010020 |
work_keys_str_mv | AT osadebeymichael localindicatorsofspatialautocorrelationlisaapplicationtoblindnoisebasedperceptualqualitymetricindexformagneticresonanceimages AT pedersenmarius localindicatorsofspatialautocorrelationlisaapplicationtoblindnoisebasedperceptualqualitymetricindexformagneticresonanceimages AT arnolddouglas localindicatorsofspatialautocorrelationlisaapplicationtoblindnoisebasedperceptualqualitymetricindexformagneticresonanceimages AT wendelmitorajkatrina localindicatorsofspatialautocorrelationlisaapplicationtoblindnoisebasedperceptualqualitymetricindexformagneticresonanceimages |