Cargando…
Scalable Database Indexing and Fast Image Retrieval Based on Deep Learning and Hierarchically Nested Structure Applied to Remote Sensing and Plant Biology
Digitalisation has opened a wealth of new data opportunities by revolutionizing how images are captured. Although the cost of data generation is no longer a major concern, the data management and processing have become a bottleneck. Any successful visual trait system requires automated data structur...
Autores principales: | Sadeghi-Tehran, Pouria, Angelov, Plamen, Virlet, Nicolas, Hawkesford, Malcolm J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8320911/ https://www.ncbi.nlm.nih.gov/pubmed/34460461 http://dx.doi.org/10.3390/jimaging5030033 |
Ejemplares similares
-
Multi-feature machine learning model for automatic segmentation of green fractional vegetation cover for high-throughput field phenotyping
por: Sadeghi-Tehran, Pouria, et al.
Publicado: (2017) -
Automated Method to Determine Two Critical Growth Stages of Wheat: Heading and Flowering
por: Sadeghi-Tehran, Pouria, et al.
Publicado: (2017) -
DeepCount: In-Field Automatic Quantification of Wheat Spikes Using Simple Linear Iterative Clustering and Deep Convolutional Neural Networks
por: Sadeghi-Tehran, Pouria, et al.
Publicado: (2019) -
Functional QTL mapping and genomic prediction of canopy height in wheat measured using a robotic field phenotyping platform
por: Lyra, Danilo H, et al.
Publicado: (2020) -
Machine Learning Methods for Automatic Segmentation of Images of Field- and Glasshouse-Based Plants for High-Throughput Phenotyping
por: Okyere, Frank Gyan, et al.
Publicado: (2023)