Cargando…

Superpixel Segmentation Based on Anisotropic Edge Strength

Superpixel segmentation can benefit from the use of an appropriate method to measure edge strength. In this paper, we present such a method based on the first derivative of anisotropic Gaussian kernels. The kernels can capture the position, direction, prominence, and scale of the edge to be detected...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Gang, De Baets, Bernard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8320950/
https://www.ncbi.nlm.nih.gov/pubmed/34460495
http://dx.doi.org/10.3390/jimaging5060057
Descripción
Sumario:Superpixel segmentation can benefit from the use of an appropriate method to measure edge strength. In this paper, we present such a method based on the first derivative of anisotropic Gaussian kernels. The kernels can capture the position, direction, prominence, and scale of the edge to be detected. We incorporate the anisotropic edge strength into the distance measure between neighboring superpixels, thereby improving the performance of an existing graph-based superpixel segmentation method. Experimental results validate the superiority of our method in generating superpixels over the competing methods. It is also illustrated that the proposed superpixel segmentation method can facilitate subsequent saliency detection.