Cargando…

Beta regression model nonlinear in the parameters with additive measurement errors in variables

We propose in this paper a general class of nonlinear beta regression models with measurement errors. The motivation for proposing this model arose from a real problem we shall discuss here. The application concerns a usual oil refinery process where the main covariate is the concentration of a typi...

Descripción completa

Detalles Bibliográficos
Autores principales: de Brito Trindade, Daniele, Espinheira, Patrícia Leone, Pinto Vasconcellos, Klaus Leite, Farfán Carrasco, Jalmar Manuel, do Carmo Soares de Lima, Maria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8320978/
https://www.ncbi.nlm.nih.gov/pubmed/34324520
http://dx.doi.org/10.1371/journal.pone.0254103
_version_ 1783730741838872576
author de Brito Trindade, Daniele
Espinheira, Patrícia Leone
Pinto Vasconcellos, Klaus Leite
Farfán Carrasco, Jalmar Manuel
do Carmo Soares de Lima, Maria
author_facet de Brito Trindade, Daniele
Espinheira, Patrícia Leone
Pinto Vasconcellos, Klaus Leite
Farfán Carrasco, Jalmar Manuel
do Carmo Soares de Lima, Maria
author_sort de Brito Trindade, Daniele
collection PubMed
description We propose in this paper a general class of nonlinear beta regression models with measurement errors. The motivation for proposing this model arose from a real problem we shall discuss here. The application concerns a usual oil refinery process where the main covariate is the concentration of a typically measured in error reagent and the response is a catalyst’s percentage of crystallinity involved in the process. Such data have been modeled by nonlinear beta and simplex regression models. Here we propose a nonlinear beta model with the possibility of the chemical reagent concentration being measured with error. The model parameters are estimated by different methods. We perform Monte Carlo simulations aiming to evaluate the performance of point and interval estimators of the model parameters. Both results of simulations and the application favors the method of estimation by maximum pseudo-likelihood approximation.
format Online
Article
Text
id pubmed-8320978
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-83209782021-07-31 Beta regression model nonlinear in the parameters with additive measurement errors in variables de Brito Trindade, Daniele Espinheira, Patrícia Leone Pinto Vasconcellos, Klaus Leite Farfán Carrasco, Jalmar Manuel do Carmo Soares de Lima, Maria PLoS One Research Article We propose in this paper a general class of nonlinear beta regression models with measurement errors. The motivation for proposing this model arose from a real problem we shall discuss here. The application concerns a usual oil refinery process where the main covariate is the concentration of a typically measured in error reagent and the response is a catalyst’s percentage of crystallinity involved in the process. Such data have been modeled by nonlinear beta and simplex regression models. Here we propose a nonlinear beta model with the possibility of the chemical reagent concentration being measured with error. The model parameters are estimated by different methods. We perform Monte Carlo simulations aiming to evaluate the performance of point and interval estimators of the model parameters. Both results of simulations and the application favors the method of estimation by maximum pseudo-likelihood approximation. Public Library of Science 2021-07-29 /pmc/articles/PMC8320978/ /pubmed/34324520 http://dx.doi.org/10.1371/journal.pone.0254103 Text en © 2021 de Brito Trindade et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
de Brito Trindade, Daniele
Espinheira, Patrícia Leone
Pinto Vasconcellos, Klaus Leite
Farfán Carrasco, Jalmar Manuel
do Carmo Soares de Lima, Maria
Beta regression model nonlinear in the parameters with additive measurement errors in variables
title Beta regression model nonlinear in the parameters with additive measurement errors in variables
title_full Beta regression model nonlinear in the parameters with additive measurement errors in variables
title_fullStr Beta regression model nonlinear in the parameters with additive measurement errors in variables
title_full_unstemmed Beta regression model nonlinear in the parameters with additive measurement errors in variables
title_short Beta regression model nonlinear in the parameters with additive measurement errors in variables
title_sort beta regression model nonlinear in the parameters with additive measurement errors in variables
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8320978/
https://www.ncbi.nlm.nih.gov/pubmed/34324520
http://dx.doi.org/10.1371/journal.pone.0254103
work_keys_str_mv AT debritotrindadedaniele betaregressionmodelnonlinearintheparameterswithadditivemeasurementerrorsinvariables
AT espinheirapatricialeone betaregressionmodelnonlinearintheparameterswithadditivemeasurementerrorsinvariables
AT pintovasconcellosklausleite betaregressionmodelnonlinearintheparameterswithadditivemeasurementerrorsinvariables
AT farfancarrascojalmarmanuel betaregressionmodelnonlinearintheparameterswithadditivemeasurementerrorsinvariables
AT docarmosoaresdelimamaria betaregressionmodelnonlinearintheparameterswithadditivemeasurementerrorsinvariables