Cargando…
Color Image Complexity versus Over-Segmentation: A Preliminary Study on the Correlation between Complexity Measures and Number of Segments
It is said that image segmentation is a very difficult or complex task. First of all, we emphasize the subtle difference between the notions of difficulty and complexity. Then, in this article, we focus on the question of how two widely used color image complexity measures correlate with the number...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321023/ https://www.ncbi.nlm.nih.gov/pubmed/34460718 http://dx.doi.org/10.3390/jimaging6040016 |
_version_ | 1783730752875134976 |
---|---|
author | Ivanovici, Mihai Coliban, Radu-Mihai Hatfaludi, Cosmin Nicolae, Irina Emilia |
author_facet | Ivanovici, Mihai Coliban, Radu-Mihai Hatfaludi, Cosmin Nicolae, Irina Emilia |
author_sort | Ivanovici, Mihai |
collection | PubMed |
description | It is said that image segmentation is a very difficult or complex task. First of all, we emphasize the subtle difference between the notions of difficulty and complexity. Then, in this article, we focus on the question of how two widely used color image complexity measures correlate with the number of segments resulting in over-segmentation. We study the evolution of both the image complexity measures and number of segments as the image complexity is gradually decreased by means of low-pass filtering. In this way, we tackle the possibility of predicting the difficulty of color image segmentation based on image complexity measures. We analyze the complexity of images from the point of view of color entropy and color fractal dimension and for color fractal images and the Berkeley data set we correlate these two metrics with the segmentation results, more specifically the number of quasi-flat zones and the number of JSEG regions in the resulting segmentation map. We report on our experimental results and draw conclusions. |
format | Online Article Text |
id | pubmed-8321023 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83210232021-08-26 Color Image Complexity versus Over-Segmentation: A Preliminary Study on the Correlation between Complexity Measures and Number of Segments Ivanovici, Mihai Coliban, Radu-Mihai Hatfaludi, Cosmin Nicolae, Irina Emilia J Imaging Article It is said that image segmentation is a very difficult or complex task. First of all, we emphasize the subtle difference between the notions of difficulty and complexity. Then, in this article, we focus on the question of how two widely used color image complexity measures correlate with the number of segments resulting in over-segmentation. We study the evolution of both the image complexity measures and number of segments as the image complexity is gradually decreased by means of low-pass filtering. In this way, we tackle the possibility of predicting the difficulty of color image segmentation based on image complexity measures. We analyze the complexity of images from the point of view of color entropy and color fractal dimension and for color fractal images and the Berkeley data set we correlate these two metrics with the segmentation results, more specifically the number of quasi-flat zones and the number of JSEG regions in the resulting segmentation map. We report on our experimental results and draw conclusions. MDPI 2020-03-30 /pmc/articles/PMC8321023/ /pubmed/34460718 http://dx.doi.org/10.3390/jimaging6040016 Text en © 2020 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Article Ivanovici, Mihai Coliban, Radu-Mihai Hatfaludi, Cosmin Nicolae, Irina Emilia Color Image Complexity versus Over-Segmentation: A Preliminary Study on the Correlation between Complexity Measures and Number of Segments |
title | Color Image Complexity versus Over-Segmentation: A Preliminary Study on the Correlation between Complexity Measures and Number of Segments |
title_full | Color Image Complexity versus Over-Segmentation: A Preliminary Study on the Correlation between Complexity Measures and Number of Segments |
title_fullStr | Color Image Complexity versus Over-Segmentation: A Preliminary Study on the Correlation between Complexity Measures and Number of Segments |
title_full_unstemmed | Color Image Complexity versus Over-Segmentation: A Preliminary Study on the Correlation between Complexity Measures and Number of Segments |
title_short | Color Image Complexity versus Over-Segmentation: A Preliminary Study on the Correlation between Complexity Measures and Number of Segments |
title_sort | color image complexity versus over-segmentation: a preliminary study on the correlation between complexity measures and number of segments |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321023/ https://www.ncbi.nlm.nih.gov/pubmed/34460718 http://dx.doi.org/10.3390/jimaging6040016 |
work_keys_str_mv | AT ivanovicimihai colorimagecomplexityversusoversegmentationapreliminarystudyonthecorrelationbetweencomplexitymeasuresandnumberofsegments AT colibanradumihai colorimagecomplexityversusoversegmentationapreliminarystudyonthecorrelationbetweencomplexitymeasuresandnumberofsegments AT hatfaludicosmin colorimagecomplexityversusoversegmentationapreliminarystudyonthecorrelationbetweencomplexitymeasuresandnumberofsegments AT nicolaeirinaemilia colorimagecomplexityversusoversegmentationapreliminarystudyonthecorrelationbetweencomplexitymeasuresandnumberofsegments |