Cargando…
Redesigned Skip-Network for Crowd Counting with Dilated Convolution and Backward Connection
Crowd counting is a challenging task dealing with the variation of an object scale and a crowd density. Existing works have emphasized on skip connections by integrating shallower layers with deeper layers, where each layer extracts features in a different object scale and crowd density. However, on...
Autores principales: | Sooksatra, Sorn, Kondo, Toshiaki, Bunnun, Pished, Yoshitaka, Atsuo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321029/ https://www.ncbi.nlm.nih.gov/pubmed/34460730 http://dx.doi.org/10.3390/jimaging6050028 |
Ejemplares similares
-
Dilated Skip Convolution for Facial Landmark Detection
por: Chim, Seyha, et al.
Publicado: (2019) -
Skeleton-Based Attention Mask for Pedestrian Attribute Recognition Network
por: Sooksatra, Sorn, et al.
Publicado: (2021) -
Offset-decoupled deformable convolution for efficient crowd counting
por: Zhong, Xin, et al.
Publicado: (2022) -
A Comprehensive Review on Temporal-Action Proposal Generation
por: Sooksatra, Sorn, et al.
Publicado: (2022) -
Multiscale Aggregate Networks with Dense Connections for Crowd Counting
por: Li, Pengfei, et al.
Publicado: (2021)