Cargando…
Fusing Appearance and Spatio-Temporal Models for Person Re-Identification and Tracking
Knowing who is where is a common task for many computer vision applications. Most of the literature focuses on one of two approaches: determining who a detected person is (appearance-based re-identification) and collating positions into a list, or determining the motion of a person (spatio-temporal-...
Autores principales: | Chen, Andrew Tzer-Yeu, Biglari-Abhari, Morteza, Wang, Kevin I-Kai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321031/ https://www.ncbi.nlm.nih.gov/pubmed/34460729 http://dx.doi.org/10.3390/jimaging6050027 |
Ejemplares similares
-
Video-Based Person Re-Identification by an End-To-End Learning Architecture with Hybrid Deep Appearance-Temporal Feature
por: Sun, Rui, et al.
Publicado: (2018) -
Adaptive Real-Time Object Detection for Autonomous Driving Systems
por: Hemmati, Maryam, et al.
Publicado: (2022) -
Spatio-temporal mRNA tracking in the early zebrafish embryo
por: Holler, Karoline, et al.
Publicado: (2021) -
A Cascade Attention Based Facial Expression Recognition Network by Fusing Multi-Scale Spatio-Temporal Features
por: Zhu, Xiaoliang, et al.
Publicado: (2022) -
Fusing an agent-based model of mosquito population dynamics with a statistical reconstruction of spatio-temporal abundance patterns
por: Cavany, Sean M., et al.
Publicado: (2023)