Cargando…
No-Reference Image Quality Assessment Based on the Fusion of Statistical and Perceptual Features
The goal of no-reference image quality assessment (NR-IQA) is to predict the quality of an image as perceived by human observers without using any pristine, reference images. In this study, an NR-IQA algorithm is proposed which is driven by a novel feature vector containing statistical and perceptua...
Autor principal: | Varga, Domonkos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321044/ https://www.ncbi.nlm.nih.gov/pubmed/34460690 http://dx.doi.org/10.3390/jimaging6080075 |
Ejemplares similares
-
No-Reference Image Quality Assessment with Global Statistical Features
por: Varga, Domonkos
Publicado: (2021) -
No-Reference Video Quality Assessment Using the Temporal Statistics of Global and Local Image Features
por: Varga, Domonkos
Publicado: (2022) -
An Optimization-Based Family of Predictive, Fusion-Based Models for Full-Reference Image Quality Assessment
por: Varga, Domonkos
Publicado: (2023) -
No-Reference Quality Assessment of Authentically Distorted Images Based on Local and Global Features
por: Varga, Domonkos
Publicado: (2022) -
No-Reference Video Quality Assessment Using Multi-Pooled, Saliency Weighted Deep Features and Decision Fusion
por: Varga, Domonkos
Publicado: (2022)