Cargando…
A Discriminative Long Short Term Memory Network with Metric Learning Applied to Multispectral Time Series Classification
In this article, we propose an end-to-end deep network for the classification of multi-spectral time series and apply them to crop type mapping. Long short-term memory networks (LSTMs) are well established in this regard, thanks to their capacity to capture both long and short term temporal dependen...
Autores principales: | Bozo, Merve, Aptoula, Erchan, Çataltepe, Zehra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321045/ https://www.ncbi.nlm.nih.gov/pubmed/34460661 http://dx.doi.org/10.3390/jimaging6070068 |
Ejemplares similares
-
Classification Metrics for Improved Atmospheric Correction of Multispectral VNIR Imagery
por: Richter, Rudolf
Publicado: (2008) -
Applying Neural Networks to Hyperspectral and Multispectral Field Data for Discrimination of Cruciferous Weeds in Winter Crops
por: de Castro, Ana-Isabel, et al.
Publicado: (2012) -
Evolving Long Short-Term Memory Network-Based Text Classification
por: Singh, Arjun, et al.
Publicado: (2022) -
Quality assessment of butter cookies applying multispectral imaging
por: Andresen, Mette S, et al.
Publicado: (2013) -
The use of multispectral imaging for the discrimination of Arabica and Robusta coffee beans
por: Mihailova, Alina, et al.
Publicado: (2022)