Cargando…

Unsupervised Mitral Valve Tracking for Disease Detection in Echocardiogram Videos

In this work, a novel algorithmic scheme is developed that processes echocardiogram videos, and tracks the movement of the mitral valve leaflets, and thereby estimates whether the movement is symptomatic of a healthy or diseased heart. This algorithm uses automatic Otsu’s thresholding to find a clos...

Descripción completa

Detalles Bibliográficos
Autores principales: Shahid, Kazi Tanzeem, Schizas, Ioannis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321051/
https://www.ncbi.nlm.nih.gov/pubmed/34460750
http://dx.doi.org/10.3390/jimaging6090093
Descripción
Sumario:In this work, a novel algorithmic scheme is developed that processes echocardiogram videos, and tracks the movement of the mitral valve leaflets, and thereby estimates whether the movement is symptomatic of a healthy or diseased heart. This algorithm uses automatic Otsu’s thresholding to find a closed boundary around the left atrium, with the basic presumption that it is situated in the bottom right corner of the apical 4 chamber view. A centroid is calculated, and protruding prongs are taken within a 40-degree cone above the centroid, where the mitral valve is located. Binary images are obtained from the videos where the mitral valve leaflets have different pixel values than the cavity of the left atrium. Thus, the points where the prongs touch the valve will show where the mitral valve leaflets are located. The standard deviation of these points is used to calculate closeness of the leaflets. The estimation of the valve movement across subsequent frames is used to determine if the movement is regular, or affected by heart disease. Tests conducted with numerous videos containing both healthy and diseased hearts attest to our method’s efficacy, with a key novelty in being fully unsupervised and computationally efficient.