Cargando…
Understanding the Effects of Optimal Combination of Spectral Bands on Deep Learning Model Predictions: A Case Study Based on Permafrost Tundra Landform Mapping Using High Resolution Multispectral Satellite Imagery
Deep learning (DL) convolutional neural networks (CNNs) have been rapidly adapted in very high spatial resolution (VHSR) satellite image analysis. DLCNN-based computer visions (CV) applications primarily aim for everyday object detection from standard red, green, blue (RGB) imagery, while earth scie...
Autores principales: | Bhuiyan, Md Abul Ehsan, Witharana, Chandi, Liljedahl, Anna K., Jones, Benjamin M., Daanen, Ronald, Epstein, Howard E., Kent, Kelcy, Griffin, Claire G., Agnew, Amber |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321057/ https://www.ncbi.nlm.nih.gov/pubmed/34460754 http://dx.doi.org/10.3390/jimaging6090097 |
Ejemplares similares
-
Use of Very High Spatial Resolution Commercial Satellite Imagery and Deep Learning to Automatically Map Ice-Wedge Polygons across Tundra Vegetation Types
por: Bhuiyan, Md Abul Ehsan, et al.
Publicado: (2020) -
Reduced arctic tundra productivity linked with landform and climate change interactions
por: Lara, Mark J., et al.
Publicado: (2018) -
Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska
por: Lara, Mark J., et al.
Publicado: (2018) -
Drying of tundra landscapes will limit subsidence-induced acceleration of permafrost thaw
por: Painter, Scott L., et al.
Publicado: (2023) -
Detection of Neolithic Settlements in Thessaly (Greece) Through Multispectral and Hyperspectral Satellite Imagery
por: Alexakis, Dimitrios, et al.
Publicado: (2009)