Cargando…
Spatially and Spectrally Concatenated Neural Networks for Efficient Lossless Compression of Hyperspectral Imagery
To achieve efficient lossless compression of hyperspectral images, we design a concatenated neural network, which is capable of extracting both spatial and spectral correlations for accurate pixel value prediction. Unlike conventional neural network based methods in the literature, the proposed neur...
Autores principales: | Jiang, Zhuocheng, Pan, W. David, Shen, Hongda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321058/ https://www.ncbi.nlm.nih.gov/pubmed/34460584 http://dx.doi.org/10.3390/jimaging6060038 |
Ejemplares similares
-
Hyperspectral Imagery Super-Resolution by Compressive Sensing Inspired Dictionary Learning and Spatial-Spectral Regularization
por: Huang, Wei, et al.
Publicado: (2015) -
Hierarchical Sparse Learning with Spectral-Spatial Information for Hyperspectral Imagery Denoising
por: Liu, Shuai, et al.
Publicado: (2016) -
Lossless Compression Handbook
por: Sayood, Khalid
Publicado: (2002) -
Linear Spatial Misregistration Detection and Correction Based on Spectral Unmixing for FAHI Hyperspectral Imagery
por: Zhang, Xiangyue, et al.
Publicado: (2022) -
Group Sparse Representation Based on Nonlocal Spatial and Local Spectral Similarity for Hyperspectral Imagery Classification
por: Yu, Haoyang, et al.
Publicado: (2018)