Cargando…

Do We Train on Test Data? Purging CIFAR of Near-Duplicates

The CIFAR-10 and CIFAR-100 datasets are two of the most heavily benchmarked datasets in computer vision and are often used to evaluate novel methods and model architectures in the field of deep learning. However, we find that 3.3% and 10% of the images from the test sets of these datasets have dupli...

Descripción completa

Detalles Bibliográficos
Autores principales: Barz, Björn, Denzler, Joachim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321059/
https://www.ncbi.nlm.nih.gov/pubmed/34460587
http://dx.doi.org/10.3390/jimaging6060041

Ejemplares similares