Cargando…
Comparative Study of First Order Optimizers for Image Classification Using Convolutional Neural Networks on Histopathology Images
The classification of histopathology images requires an experienced physician with years of experience to classify the histopathology images accurately. In this study, an algorithm was developed to assist physicians in classifying histopathology images; the algorithm receives the histopathology imag...
Autores principales: | Kandel, Ibrahem, Castelli, Mauro, Popovič, Aleš |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321140/ https://www.ncbi.nlm.nih.gov/pubmed/34460749 http://dx.doi.org/10.3390/jimaging6090092 |
Ejemplares similares
-
Comparing Stacking Ensemble Techniques to Improve Musculoskeletal Fracture Image Classification
por: Kandel, Ibrahem, et al.
Publicado: (2021) -
Musculoskeletal Images Classification for Detection of Fractures Using Transfer Learning
por: Kandel, Ibrahem, et al.
Publicado: (2020) -
Multiclass classification of breast cancer histopathology images using multilevel features of deep convolutional neural network
por: Hameed, Zabit, et al.
Publicado: (2022) -
Hyperspectral Image Classification with Optimized Compressed Synergic Deep Convolution Neural Network with Aquila Optimization
por: Subba Reddy, Tatireddy, et al.
Publicado: (2022) -
Breast cancer histopathological image classification using convolutional neural networks with small SE-ResNet module
por: Jiang, Yun, et al.
Publicado: (2019)