Cargando…
No-Reference Quality Assessment of In-Capture Distorted Videos
We introduce a no-reference method for the assessment of the quality of videos affected by in-capture distortions due to camera hardware and processing software. The proposed method encodes both quality attributes and semantic content of each video frame by using two Convolutional Neural Networks (C...
Autores principales: | Agarla, Mirko, Celona, Luigi, Schettini, Raimondo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321146/ https://www.ncbi.nlm.nih.gov/pubmed/34460689 http://dx.doi.org/10.3390/jimaging6080074 |
Ejemplares similares
-
An Efficient Method for No-Reference Video Quality Assessment
por: Agarla, Mirko, et al.
Publicado: (2021) -
Quasi Real-Time Apple Defect Segmentation Using Deep Learning
por: Agarla, Mirko, et al.
Publicado: (2023) -
A Genetic Algorithm to Combine Deep Features for the Aesthetic Assessment of Images Containing Faces
por: Celona, Luigi, et al.
Publicado: (2021) -
Fine-Grained Face Annotation Using Deep Multi-Task CNN
por: Celona, Luigi, et al.
Publicado: (2018) -
No Reference, Opinion Unaware Image Quality Assessment by Anomaly Detection
por: Leonardi, Marco, et al.
Publicado: (2021)