Cargando…

Edge-Based Color Image Segmentation Using Particle Motion in a Vector Image Field Derived from Local Color Distance Images

This paper presents an edge-based color image segmentation approach, derived from the method of particle motion in a vector image field, which could previously be applied only to monochrome images. Rather than using an edge vector field derived from a gradient vector field and a normal compressive v...

Descripción completa

Detalles Bibliográficos
Autores principales: Phornphatcharaphong, Wutthichai, Eua-Anant, Nawapak
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321147/
https://www.ncbi.nlm.nih.gov/pubmed/34460665
http://dx.doi.org/10.3390/jimaging6070072
Descripción
Sumario:This paper presents an edge-based color image segmentation approach, derived from the method of particle motion in a vector image field, which could previously be applied only to monochrome images. Rather than using an edge vector field derived from a gradient vector field and a normal compressive vector field derived from a Laplacian-gradient vector field, two novel orthogonal vector fields were directly computed from a color image, one parallel and another orthogonal to the edges. These were then used in the model to force a particle to move along the object edges. The normal compressive vector field is created from the collection of the center-to-centroid vectors of local color distance images. The edge vector field is later derived from the normal compressive vector field so as to obtain a vector field analogous to a Hamiltonian gradient vector field. Using the PASCAL Visual Object Classes Challenge 2012 (VOC2012), the Berkeley Segmentation Data Set, and Benchmarks 500 (BSDS500), the benchmark score of the proposed method is provided in comparison to those of the traditional particle motion in a vector image field (PMVIF), Watershed, simple linear iterative clustering (SLIC), K-means, mean shift, and J-value segmentation (JSEG). The proposed method yields better Rand index (RI), global consistency error (GCE), normalized variation of information (NVI), boundary displacement error (BDE), Dice coefficients, faster computation time, and noise resistance.