Cargando…
A Survey of Computer Vision Methods for 2D Object Detection from Unmanned Aerial Vehicles
The spread of Unmanned Aerial Vehicles (UAVs) in the last decade revolutionized many applications fields. Most investigated research topics focus on increasing autonomy during operational campaigns, environmental monitoring, surveillance, maps, and labeling. To achieve such complex goals, a high-lev...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321148/ https://www.ncbi.nlm.nih.gov/pubmed/34460693 http://dx.doi.org/10.3390/jimaging6080078 |
Sumario: | The spread of Unmanned Aerial Vehicles (UAVs) in the last decade revolutionized many applications fields. Most investigated research topics focus on increasing autonomy during operational campaigns, environmental monitoring, surveillance, maps, and labeling. To achieve such complex goals, a high-level module is exploited to build semantic knowledge leveraging the outputs of the low-level module that takes data acquired from multiple sensors and extracts information concerning what is sensed. All in all, the detection of the objects is undoubtedly the most important low-level task, and the most employed sensors to accomplish it are by far RGB cameras due to costs, dimensions, and the wide literature on RGB-based object detection. This survey presents recent advancements in 2D object detection for the case of UAVs, focusing on the differences, strategies, and trade-offs between the generic problem of object detection, and the adaptation of such solutions for operations of the UAV. Moreover, a new taxonomy that considers different heights intervals and driven by the methodological approaches introduced by the works in the state of the art instead of hardware, physical and/or technological constraints is proposed. |
---|