Cargando…
Morphological Estimation of Cellularity on Neo-Adjuvant Treated Breast Cancer Histological Images
This paper describes a methodology that extracts key morphological features from histological breast cancer images in order to automatically assess Tumour Cellularity (TC) in Neo-Adjuvant treatment (NAT) patients. The response to NAT gives information on therapy efficacy and it is measured by the re...
Autores principales: | Ortega-Ruiz, Mauricio Alberto, Karabağ, Cefa, Garduño, Victor García, Reyes-Aldasoro, Constantino Carlos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321162/ https://www.ncbi.nlm.nih.gov/pubmed/34460542 http://dx.doi.org/10.3390/jimaging6100101 |
Ejemplares similares
-
Impact of Training Data, Ground Truth and Shape Variability in the Deep Learning-Based Semantic Segmentation of HeLa Cells Observed with Electron Microscopy
por: Karabağ, Cefa, et al.
Publicado: (2023) -
Volumetric Semantic Instance Segmentation of the Plasma Membrane of HeLa Cells
por: Karabağ, Cefa, et al.
Publicado: (2021) -
Classification and Visualisation of Normal and Abnormal Radiographs; A Comparison between Eleven Convolutional Neural Network Architectures
por: Ananda, Ananda, et al.
Publicado: (2021) -
Semantic segmentation of HeLa cells: An objective comparison between one traditional algorithm and four deep-learning architectures
por: Karabağ, Cefa, et al.
Publicado: (2020) -
Segmentation and Modelling of the Nuclear Envelope of HeLa Cells Imaged with Serial Block Face Scanning Electron Microscopy †
por: Karabağ, Cefa, et al.
Publicado: (2019)