Cargando…
Lung Segmentation on High-Resolution Computerized Tomography Images Using Deep Learning: A Preliminary Step for Radiomics Studies
Background: The aim of this work is to identify an automatic, accurate, and fast deep learning segmentation approach, applied to the parenchyma, using a very small dataset of high-resolution computed tomography images of patients with idiopathic pulmonary fibrosis. In this way, we aim to enhance the...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321165/ https://www.ncbi.nlm.nih.gov/pubmed/34460569 http://dx.doi.org/10.3390/jimaging6110125 |
_version_ | 1783730786124431360 |
---|---|
author | Comelli, Albert Coronnello, Claudia Dahiya, Navdeep Benfante, Viviana Palmucci, Stefano Basile, Antonio Vancheri, Carlo Russo, Giorgio Yezzi, Anthony Stefano, Alessandro |
author_facet | Comelli, Albert Coronnello, Claudia Dahiya, Navdeep Benfante, Viviana Palmucci, Stefano Basile, Antonio Vancheri, Carlo Russo, Giorgio Yezzi, Anthony Stefano, Alessandro |
author_sort | Comelli, Albert |
collection | PubMed |
description | Background: The aim of this work is to identify an automatic, accurate, and fast deep learning segmentation approach, applied to the parenchyma, using a very small dataset of high-resolution computed tomography images of patients with idiopathic pulmonary fibrosis. In this way, we aim to enhance the methodology performed by healthcare operators in radiomics studies where operator-independent segmentation methods must be used to correctly identify the target and, consequently, the texture-based prediction model. Methods: Two deep learning models were investigated: (i) U-Net, already used in many biomedical image segmentation tasks, and (ii) E-Net, used for image segmentation tasks in self-driving cars, where hardware availability is limited and accurate segmentation is critical for user safety. Our small image dataset is composed of 42 studies of patients with idiopathic pulmonary fibrosis, of which only 32 were used for the training phase. We compared the performance of the two models in terms of the similarity of their segmentation outcome with the gold standard and in terms of their resources’ requirements. Results: E-Net can be used to obtain accurate (dice similarity coefficient = 95.90%), fast (20.32 s), and clinically acceptable segmentation of the lung region. Conclusions: We demonstrated that deep learning models can be efficiently applied to rapidly segment and quantify the parenchyma of patients with pulmonary fibrosis, without any radiologist supervision, in order to produce user-independent results. |
format | Online Article Text |
id | pubmed-8321165 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83211652021-08-26 Lung Segmentation on High-Resolution Computerized Tomography Images Using Deep Learning: A Preliminary Step for Radiomics Studies Comelli, Albert Coronnello, Claudia Dahiya, Navdeep Benfante, Viviana Palmucci, Stefano Basile, Antonio Vancheri, Carlo Russo, Giorgio Yezzi, Anthony Stefano, Alessandro J Imaging Article Background: The aim of this work is to identify an automatic, accurate, and fast deep learning segmentation approach, applied to the parenchyma, using a very small dataset of high-resolution computed tomography images of patients with idiopathic pulmonary fibrosis. In this way, we aim to enhance the methodology performed by healthcare operators in radiomics studies where operator-independent segmentation methods must be used to correctly identify the target and, consequently, the texture-based prediction model. Methods: Two deep learning models were investigated: (i) U-Net, already used in many biomedical image segmentation tasks, and (ii) E-Net, used for image segmentation tasks in self-driving cars, where hardware availability is limited and accurate segmentation is critical for user safety. Our small image dataset is composed of 42 studies of patients with idiopathic pulmonary fibrosis, of which only 32 were used for the training phase. We compared the performance of the two models in terms of the similarity of their segmentation outcome with the gold standard and in terms of their resources’ requirements. Results: E-Net can be used to obtain accurate (dice similarity coefficient = 95.90%), fast (20.32 s), and clinically acceptable segmentation of the lung region. Conclusions: We demonstrated that deep learning models can be efficiently applied to rapidly segment and quantify the parenchyma of patients with pulmonary fibrosis, without any radiologist supervision, in order to produce user-independent results. MDPI 2020-11-19 /pmc/articles/PMC8321165/ /pubmed/34460569 http://dx.doi.org/10.3390/jimaging6110125 Text en © 2020 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Article Comelli, Albert Coronnello, Claudia Dahiya, Navdeep Benfante, Viviana Palmucci, Stefano Basile, Antonio Vancheri, Carlo Russo, Giorgio Yezzi, Anthony Stefano, Alessandro Lung Segmentation on High-Resolution Computerized Tomography Images Using Deep Learning: A Preliminary Step for Radiomics Studies |
title | Lung Segmentation on High-Resolution Computerized Tomography Images Using Deep Learning: A Preliminary Step for Radiomics Studies |
title_full | Lung Segmentation on High-Resolution Computerized Tomography Images Using Deep Learning: A Preliminary Step for Radiomics Studies |
title_fullStr | Lung Segmentation on High-Resolution Computerized Tomography Images Using Deep Learning: A Preliminary Step for Radiomics Studies |
title_full_unstemmed | Lung Segmentation on High-Resolution Computerized Tomography Images Using Deep Learning: A Preliminary Step for Radiomics Studies |
title_short | Lung Segmentation on High-Resolution Computerized Tomography Images Using Deep Learning: A Preliminary Step for Radiomics Studies |
title_sort | lung segmentation on high-resolution computerized tomography images using deep learning: a preliminary step for radiomics studies |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321165/ https://www.ncbi.nlm.nih.gov/pubmed/34460569 http://dx.doi.org/10.3390/jimaging6110125 |
work_keys_str_mv | AT comellialbert lungsegmentationonhighresolutioncomputerizedtomographyimagesusingdeeplearningapreliminarystepforradiomicsstudies AT coronnelloclaudia lungsegmentationonhighresolutioncomputerizedtomographyimagesusingdeeplearningapreliminarystepforradiomicsstudies AT dahiyanavdeep lungsegmentationonhighresolutioncomputerizedtomographyimagesusingdeeplearningapreliminarystepforradiomicsstudies AT benfanteviviana lungsegmentationonhighresolutioncomputerizedtomographyimagesusingdeeplearningapreliminarystepforradiomicsstudies AT palmuccistefano lungsegmentationonhighresolutioncomputerizedtomographyimagesusingdeeplearningapreliminarystepforradiomicsstudies AT basileantonio lungsegmentationonhighresolutioncomputerizedtomographyimagesusingdeeplearningapreliminarystepforradiomicsstudies AT vanchericarlo lungsegmentationonhighresolutioncomputerizedtomographyimagesusingdeeplearningapreliminarystepforradiomicsstudies AT russogiorgio lungsegmentationonhighresolutioncomputerizedtomographyimagesusingdeeplearningapreliminarystepforradiomicsstudies AT yezzianthony lungsegmentationonhighresolutioncomputerizedtomographyimagesusingdeeplearningapreliminarystepforradiomicsstudies AT stefanoalessandro lungsegmentationonhighresolutioncomputerizedtomographyimagesusingdeeplearningapreliminarystepforradiomicsstudies |