Cargando…
Deep Learning of Fuzzy Weighted Multi-Resolution Depth Motion Maps with Spatial Feature Fusion for Action Recognition
Human action recognition (HAR) is an important yet challenging task. This paper presents a novel method. First, fuzzy weight functions are used in computations of depth motion maps (DMMs). Multiple length motion information is also used. These features are referred to as fuzzy weighted multi-resolut...
Autores principales: | Al-Faris, Mahmoud, Chiverton, John, Yang, Yanyan, Ndzi, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321166/ https://www.ncbi.nlm.nih.gov/pubmed/34460648 http://dx.doi.org/10.3390/jimaging5100082 |
Ejemplares similares
-
A Review on Computer Vision-Based Methods for Human Action Recognition
por: Al-Faris, Mahmoud, et al.
Publicado: (2020) -
Exploring 3D Human Action Recognition Using STACOG on Multi-View Depth Motion Maps Sequences
por: Bulbul, Mohammad Farhad, et al.
Publicado: (2021) -
Depth-to-bedrock map of China at a spatial resolution of 100 meters
por: Yan, Fapeng, et al.
Publicado: (2020) -
Multiscale Attention Fusion for Depth Map Super-Resolution Generative Adversarial Networks
por: Xu, Dan, et al.
Publicado: (2023) -
HMM-Based Action Recognition System for Elderly Healthcare by Colorizing Depth Map
por: Htet, Ye, et al.
Publicado: (2022)