Cargando…
Fully 3D Active Surface with Machine Learning for PET Image Segmentation
In order to tackle three-dimensional tumor volume reconstruction from Positron Emission Tomography (PET) images, most of the existing algorithms rely on the segmentation of independent PET slices. To exploit cross-slice information, typically overlooked in these 2D implementations, I present an algo...
Autor principal: | Comelli, Albert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321170/ https://www.ncbi.nlm.nih.gov/pubmed/34460557 http://dx.doi.org/10.3390/jimaging6110113 |
Ejemplares similares
-
A preliminary PET radiomics study of brain metastases using a fully automatic segmentation method
por: Stefano, Alessandro, et al.
Publicado: (2020) -
Fully First-Principles
Surface Spectroscopy with Machine
Learning
por: Litman, Yair, et al.
Publicado: (2023) -
Machine Learning of Hierarchical Clustering to Segment 2D and 3D Images
por: Nunez-Iglesias, Juan, et al.
Publicado: (2013) -
Semantic Instance Segmentation of Kidney Cysts in MR Images: A Fully Automated 3D Approach Developed Through Active Learning
por: Gregory, Adriana V., et al.
Publicado: (2021) -
Deep Learning-Based Methods for Prostate Segmentation in Magnetic Resonance Imaging
por: Comelli, Albert, et al.
Publicado: (2021)