Cargando…
Deep Learning and Handcrafted Features for Virus Image Classification
In this work, we present an ensemble of descriptors for the classification of virus images acquired using transmission electron microscopy. We trained multiple support vector machines on different sets of features extracted from the data. We used both handcrafted algorithms and a pretrained deep neu...
Autores principales: | Nanni, Loris, De Luca, Eugenio, Facin, Marco Ludovico, Maguolo, Gianluca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321171/ https://www.ncbi.nlm.nih.gov/pubmed/34460540 http://dx.doi.org/10.3390/jimaging6120143 |
Ejemplares similares
-
On the Efficacy of Handcrafted and Deep Features for Seed Image Classification
por: Loddo, Andrea, et al.
Publicado: (2021) -
Breast Tumor Classification in Ultrasound Images Using Combined Deep and Handcrafted Features
por: Daoud, Mohammad I., et al.
Publicado: (2020) -
Benign and Malignant Breast Tumor Classification in Ultrasound and Mammography Images via Fusion of Deep Learning and Handcraft Features
por: Cruz-Ramos, Clara, et al.
Publicado: (2023) -
Experiments of Image Classification Using Dissimilarity Spaces Built with Siamese Networks
por: Nanni, Loris, et al.
Publicado: (2021) -
A critic evaluation of methods for COVID-19 automatic detection from X-ray images
por: Maguolo, Gianluca, et al.
Publicado: (2021)