Cargando…
Endmember Learning with K-Means through SCD Model in Hyperspectral Scene Reconstructions
This paper proposes a simple yet effective method for improving the efficiency of sparse coding dictionary learning (DL) with an implication of enhancing the ultimate usefulness of compressive sensing (CS) technology for practical applications, such as in hyperspectral imaging (HSI) scene reconstruc...
Autores principales: | Chatterjee, Ayan, Yuen, Peter W. T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321185/ https://www.ncbi.nlm.nih.gov/pubmed/34460508 http://dx.doi.org/10.3390/jimaging5110085 |
Ejemplares similares
-
Directly Estimating Endmembers for Compressive Hyperspectral Images
por: Xu, Hongwei, et al.
Publicado: (2015) -
Real-time progressive hyperspectral image processing: endmember finding and anomaly detection
por: Chang, Chein-I
Publicado: (2016) -
The Successive Projection Algorithm (SPA), an Algorithm with a Spatial Constraint for the Automatic Search of Endmembers in Hyperspectral Data
por: Zhang, Jinkai, et al.
Publicado: (2008) -
Multi-GPU Based Parallel Design of the Ant Colony Optimization Algorithm for Endmember Extraction from Hyperspectral Images
por: Gao, Jianwei, et al.
Publicado: (2019) -
A Geographic Information-Assisted Temporal Mixture Analysis for Addressing the Issue of Endmember Class and Endmember Spectra Variability
por: Li, Wenliang, et al.
Publicado: (2017)